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ABSTRACT 

This dissertation contains five journal papers describing the modeling efforts that 

devoted to understand the fate and transport processes of agricultural chemicals (pesticides 

and fertilizer) in aquatic environments and their impacts on surface and subsurface water 

quality. The main tasks were (1) to develop and apply a two-dimensional (2D) reservoir toxic 

model, as a sub-model of the CE-QUAL-W2, for simulating toxic substances and (2) to 

evaluate the performance and reliability of a field-scale nonpoint source model. Erosion 

Productivity Impact Calculator (EPIC), as a tool for agricultural policy analysis. 

The 2D toxic model was developed using finite difference numerical solutions to the 

laterally integrated hydrodynamics, mass transport, and transformation equations. It was 

applied to the Shasta Reservoir, California to investigate the effects of reservoir flow regime 

on the persistence and behavior of a spilled toxic compound, methyl isothiocyanate (MITC). 

The results showed that the interflow that developed during the spill in the Shasta Reservoir 

slowed down the physico-chemical decay processes of MITC due to a reduced volatilization 

in deep layers. The amount of chemical loss through kinetic degradation processes was 

insignificant in the early stage of the spill, but the importance of these processes increased 

with time as the turbulent mixing diminished. In the late stage, the physico-chemical 

reactions became a dominant pathway that reduces the contaminant concentrations. A case 

study demonstrated that reservoir flow regime substantially affects the persistence of the 

volatile toxic contaminant in the stratified reservoir. The overflow regime resulted in a 

reduced toxic contamination level (less persistent), shorter plume length, and longer response 

time compare to the interflow. These differences may be considered in water quality 

management as water intake structures and recreational activities are mostly located 

downstream near the dam. 

The model was also tested and validated using field data for a herbicide, atrazine [2-

chloro-4-ethylamino-6-isopropylamino-l,3,5-triazine], collected from the Saylorville 

Reservoir, Iowa. The seasonal half-life of atrazine in the Saylorville Reservoir was estimated 

with a mass balance concept and used as input for the 2D toxic model. The half-life varied 
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monthly from 2 to 58 days depending upon environmental conditions. An inverse relation 

was found between the half-life and the daily hours of simlight, showing the significance of 

photodegradation at the study site. The fate and transport of atrazine were investigated using 

seasonal flow circulation patterns, thermal structures, and spatial and temporal distributions 

of atrazine concentrations. In general, no strong thermal stratification in the Saylorville 

Reservoir was noticed from both observed and simulated results. The effect of flow short-

circuiting on the transport of atrazine was notable during sunmier and resulted in less mixing 

near the surface of the reservoir. The model accurately simulated the temporal variations of 

observed atrazine concentrations and captured the peak concentrations. The use of monthly 

half-life led to more accurate predictions of atrazine concentration because of time-varying 

environmental conditions such as temperature and sunlight. The assumption of steady 

transformation rate over the entire periods resulted in a 40% overestimation in predicting 

peak concentrations. 

The EPIC model was tested at two field sites in Iowa. The model's performance was 

evaluated through simulations of subsurface drain flow, nitrogen loss, and crop yield in 

response to various tillage and crop rotation systems. Based on the EPIC evaluation smdy, it 

is concluded that standard tabulated curve number values should be adequately reduced to 

represent the impacts of residue cover on the partition of precipitation between surface runoff 

and infiltration. The results showed that EPIC is sensitive to variations in tillage and 

cropping practices and can be used to estimate long-term environmental indicators in 

response to different management systems. However, clear discrepancies occurred between 

some model estimates and corresponding measured values, e.g., under-prediction of peak 

flows and nitrogen losses during storm events. Two potential sources of these errors include: 

(1) the lack of a preferential flow component, and (2) nitrogen transformation routines that 

may not adequately reflect all of the processes that occur in the field. EPIC also showed a 

limited capability to reproduce tillage and crop rotation effects on crop yield. 
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CHAPTER 1. GENERAL INTRODUCTION 

Background 

The great production efficiency of modem agriculture has heavily relied on the use of 

various agricultural chemicals such as herbicides, fungicides, insecticides, and chemical 

fertilizers. Even though modem agriculture is credited with providing plentiful low-cost 

supplies of food, it has also been accused of creating numerous environmental problems 

(Canter 1986). When these chemicals first began to use, concern about the environmental 

consequences was minimal. In the mid-1960's, however, small groups of people and 

government agencies were awakened to its new significance that some agricultural chemicals 

were damaging the environment, and may be affecting human as well. The United States 

Environmental Protection Agency (EPA) recognized the harmful effects of some persistent 

chemicals (i.e., DDT, DDE, aldrin, and dieldrin) and eventually banned their use in 1970's. 

Thereafter, chemical manufacturers began to produce new chemicsils that were more effective 

and thought to be environmentally sound. 

Although modem agricultural chemicals are less persistent in the nature and their 

impacts on human health are not well understood, the public has shown a great deal of 

concern because their extensive transport and intensive use in agricultural lands are likely to 

bear various environmental risks either by intended or unintended ways. For instance, some 

accidental spills of toxic pesticides into river and reservoir systems seriously affected 

fisheries and local water supply systems in a short time period (Capel et al 1988; Chatteijee 

1991). Chemical spill into a surface water system is not a matter of frequent incident, but the 

environmental and economic losses are fatal for a community. In the Midwest of United 

States, the agricultural pollutants are the major non-point source that contaminating river and 

reservoir water quality. The occurrences of significant level of nitrate and pesticides 

concentrations in groundwater, rivers, and reservoirs are seriously concerned because of not 

only for its potential adverse impacts on aquatic organisms and human health but also for 

economic perspectives (Thurman et al. 1991; Goolsby et al 1993; Hallberg 1996). Since these 

chemicals are not easily eliminated from drinking water by conventional water treatment 
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processes, tap water concentrations are similar to raw water concentrations unless an 

advanced treatment process sucli as ion exchange and carbon filtration is employed (Hallberg 

1996). 

Agricultural chemicals can reach surface and subsurface water system through various 

pathways: surface runoff, seepage flow, artificial drain flow, aerial drift during application 

and redeposition in waters upon volatilization, precipitation, and accidental spill. Their fate, 

transport, and exposure level in the envirorunent depend upon various factors: chemical own 

properties such as solubility, sorption potential, volatility, and persistence; application 

amount; agricultural management practices; weather; and hydrologic conditions of 

watershed. Conway and Pretty (1991) reported the average nitrogen fertilizer applications to 

arable and permanent crops in U.S. is about 75 kg-N/ha. In Iowa, an average of 137 kg-N/ha 

was applied to com fields as fertilizer in 1990. Atrazine, one of the most intensively used 

herbicides in com cropping area, is the most fi-equently detected chemical with highest 

concentrations in 76 Midwestern reservoirs. A survey of pesticides used in Iowa crop 

production in 1990 showed that 61% of the com crop land (roughly 3 million ha) in Iowa was 

treated with atrazine, corresponding to an application of 3.4 million kg of active ingredient. 

The United States Department of Agriculture (USDA)'s 1992 National Resource Inventory 

(NRI) data revealed that abut 152 and 718 thousand tons of nitrogen lost from agricultural 

lands of Iowa and Com Belt area, respectively, through leaching and runoff (Babcock et al. 

1997). The loss of Atrazine was about 10 and 95 thousand kilograms for the same areas, 

respectively. Therefore, the important research questions are "What is the fate of these off-

site chemicals and how persistent in the environment?" and "What are the environmental 

impacts of these chemicals on the ecosystem and human health?". 

Over the past decades, studies have been conducted to investigate the fate and transport 

processes of these agricultural pollutants in the nature and so as to develop better 

management practices for minimizing their adverse impacts on the environment. A great 

number of experimental studies have provided essential data and important answers towards 

understanding these processes, but they are often site-specific to some degree and 



www.manaraa.com

3 

prohibitively costly to perform in all cases to directly extend experimental results from a 

small number of hypothetical scenarios to all conceivable situations. 

Therefore, mathematical simulation models, as a proxy for experimental approaches, 

are increasingly used to enhance the understanding of these processes and assess the impacts 

of the off-site transport of these pollutants on economic and environmental outcomes. The 

concept, capabilities, and limitations of these mathematical models are well documented in 

Donigian and Huber (1991) and Wurbs (1995). The main uses of these models were to (1) 

identify the fate of chemicals by quantifying their transport and kinetics of physico-chemical 

reactions, (2) to determine the level of contaminant exposure concentrations to aquatic 

organisms and humans, and (3) to predict futiu-e environmental impacts under various 

loading scenarios or pollutant control alternatives (Schnoor 1996). Some models have been 

effectively used and played an important role to provide adequate information for decision 

makers and environmental policy makers, but there still remains great challenges to validate 

the models against more field data and enhance the capabilities of the models. These 

challenges are becoming more significant since environmental controls become more costly 

to implement and the consequences of misjudgment (or a faulty policy) can be fatal for 

regional economics as well as environments. Therefore, a great portion of responsibility rests 

with environmental engineers to develop, test, validate, and improve these environmental 

models for better predicting the fate and transport processes of varioiis pollutants and 

assessing their impacts on water quality. 

Problem Statement 

In this study, two mathematical models: a laterally integrated two-dimensional (2D) 

hydrodynamics and transport model, CE-QUAL-W2 (Cole and Buchak 1994), and the 

Erosion Productivity Impact Calculator, EPIC model (Williams 1995) are introduced and 

studied in compliance with the need for improvement. The first model can be classified into 

in-stream water quality and the second one into nonpoint source and watershed processes. 

Since agricultural pollutants move through watersheds and eventually enter surface waters 

(river, reservoir or lake) and groundwater, both types of models are required to fiilly 
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understand the fate and transport processes along the entire pathway of pollutants in overland 

flow, surface runoff, groundwater and stream flow. Although an ultimate goal may be 

directed to the linking of these models to assess the impacts of various agricultural 

management practices on in-stream water quality, this dissertation focused on several issues 

related to improvement and enhancement of the model capabilities. The following paragraphs 

describe the motives and problem statement of this dissertation. 

Once a toxic chemical spill or runoff entering a surface waterbody, its fate and transport 

processes are governed by various factors including flow conditions, chemical and biological 

conditions of the waterbody, weather, and properties of the toxicant. In a reservoir, the 

processes can be fiirthermore complicated if the waterbody is stratified, and inflow forms a 

density current due to the temperature difference between river and ambient waters. The fate 

processes can be heavily influenced by various flow regimes, i.e., overflow, plunge flow, 

underflow, and interflow. Some chemicals are potentially more degradable through 

volatilization, photolysis, and oxidation if inflow forms an overflow regime because 

sufiScient turbulence, sunlight, and oxygen are available near the surface of the reservoir. 

Therefore, a simulation model should be able to accurately predict both the hydrodynamics of 

reservoir and the kinetic processes of contaminants because the effects of reservoir flow 

regime on the persistence of toxic contaminants are sometimes significant. 

The CE-QUAL-W2 model has been widely used for the modeling of temperature and 

conventional contaminants, i.e., dissolved oxygen and nutrient, in reservoirs. However, the 

use of model for the fate and transport of toxic contaminants such as pesticides has been 

limited because of the lack of a toxic modeling component. Chung and Gu (1998) applied the 

model to simulate and analyze the transport of a toxic pesticide that spilled into the Shasta 

Reservoir, California in 1991. The model accurately predicted the field measurements of 

water temperature and field observations of plume intruding depth and thickness. But, the 

model application was only limited to the transport and mixing processes of the pesticide. 

The chemical was treated as a conservative tracer by assuming that the level of degradation 

by kinetic reaction processes may not be significant imder the deep reservoir environments 

with low level of turbulence, lights, and oxygen after plunging. The study laid an important 
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assignment for the development of a toxic submodel to better understand the kinetics and 

behavior of the spilled chemical under various flow regimes and enhance the versatility of the 

reservoir model. A full understanding of the effects of flow regimes on the fate and transport 

of a toxic spill in a reservoir is important in engineering practice. When a flow regime is 

undesirable for more degradation, mixing, and longer travel time, one ought to know 

methods of calculating and management by which it can be prevented. If a flow regime is 

desirable for contamination control, one should be able to choose or alter the involved 

variables such as water temperature so that the flow pattern can be created or established. 

The EPIC model (Williams 1995) was originally developed by the United States 

Department of Agriculture. EPIC has been applied for studies ranging from farm-level to 

multiple states, such as the 1985 Resources Conservation Act analysis. The model was 

basically designed to simulate the impacts of erosion upon soil productivity. However, 

current version of EPIC has incorporated many advanced functions related to water quality 

and global climate/COj change, which has resulted in the model being renamed to 

Environmental Policy Integrated Climate (Williams et al. 1996). Environmental indicators 

that can be output from EPIC uiclude the transport and fate of nutrients from fertilizer and 

manure applications on eroded sediment, in runoff, and in leached water, pesticide leaching 

and runoff, the impact of atmospheric carbon levels on crop yield, sequestration of carbon in 

soil, and erosion losses due to water and wind. Recently, the EPIC model has been adopted 

within the Resources and Agricultural Police System (RAPS), an integrated modeling system 

designed to evaluate the economic and environmental impacts of agricultural polices for the 

North Central United States (Babcock et al. 1997; Gassman et al. 1998). The main uses of 

EPIC within RAPS is to provide nitrogen loss, soil erosion, and crop yield indicators in 

response to variations in tillage and crop rotation. Thus, an important aspect that may limit 

the use of EPIC in the RAPS is whether the model realistically replicate the impact of 

alternative agricultural management systems on the environmental and economic indicators. 

Although EPIC has been tested and validated on various sites and conditions, there is still a 

need to test the model with particular conditions of the study region and to further improve 

its prediction capabilities. 
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Objectives 

The main goals of this dissertation are (1) to develop and apply a 2D reservoir toxic 

model for simulating the fate and transport of toxic pollutants in surface water and 

investigating the effects of flow regimes on reservoir water quality and (2) to evaluate the 

performance and reliability of EPIC model in simulating environmental and economic 

impacts of alternative agricultural management systems. Five independent sub-studies were 

performed to achieve the goals by setting the following specific objectives. 

The specific objectives for the first goal are: 

• to develop and test a 2D toxic substance simulation model as a submodel of the CE-QUAL-

W2; 

• to investigate the effects of reservoir flow regimes on the fate and transport of a pesticide 

that spilled into a stratified reservoir using the 2D toxic model; 

• to estimate time-variable kinetic transformation rates of atrazine in the Saylorville 

Reservoir of Iowa using a mass balance model; and 

• to investigate the fate and transport of atrazine in the Saylorville Reservoir, in particular, 

for the occurrence and persistence of peak concentrations, by predicting the longitudinal and 

vertical contamination levels of atrazine using the 2D toxic model. 

The specific objectives for the second goal are: 

• to validate EPIC performance in simulating the impact of two different tillage systems on 

water balance, nitrogen loss, sediment, and crop yield using long-term field data sets 

collected at southwestern Iowa. 

• to assess the performance and reliability of EPIC in simulating subsurface drain flow, 

nitrogen loss, and crop yield in response to various tillage and cropping systems using field 

data collected at northeast of Iowa. 

Dissertation Organization 

This dissertation consists of General Introduction, five journal papers, and General 

Conclusions. Research was performed to achieve the above specific objectives. The first 

paper is an extension work of previous studies (Chung 1997; Chung and Gu 1998), and 
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contains the details of the 2D toxic model development and its application to the analysis of 

the 1991 spill in the Shasta Reservoir, California, and a case study to examine the effects of 

flow regimes on the fate of toxic contaminant and reservoir water quality. The second paper 

describes the construction processes of the mass balance model for estimating time-variable 

kinetic transformation rates of atrazine in the Saylorville Reservoir, Iowa and the impact of a 

different agricultural management system on the atrazine contamination levels in the 

reservoir. This research was performed to provide an adequate input parameters for the 

application of the 2D toxic model in this site. The third paper contains the details about the 

application of the 2D toxic model for simulating the fate and transport of atrazine in the 

Saylorville Reservoir. Simulated flow velocities, thermal structures, and atrazine 

concentrations were used to investigate the seasonal transport and fate processes of atrazine, 

and compared with field data collected earlier. The fourth and fifth papers describe the results 

of EPIC validation study in the two sites of Iowa, respectively. The fourth paper is accepted 

by the Journal of Environmental Quality. 
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CHAPTER 2. TWO-DIMENSIONAL MODELING OF THE FATE AND 
TRANSPORT OF TOXIC CONTAMINANTS IN A RESERVOIR 

A paper to be submitted to the Journal of Water Resources Planning and Management 

Se-Woong Chung and Ruochuan Gu 

Abstract 

In a stratified reservoir, the fate and transport of toxic pollutants can be significantly 

affected by flow regimes or circulation patterns. Accurate predictions of hydrodynamics and 

kinetics of physico-chemical and biological processes are important to contamination control 

and remediation management in case of a toxic chemical spill into the reservoir. A two-

dimensional toxic submodel was developed and incorporated into a laterally integrated 

hydrodynamics and transport model. The model was applied to the Shasta Reservoir, 

California to investigate the effect of flow regimes on the fate and transport of a volatile 

toxicant (MITC) during a spill. Results showed that an interflow slowed down the 

degradation of MITC due to a reduced volatilization in deep layers and resulted in a longer 

persistence of the toxicant than an overflow did. The amount of chemical loss through kinetic 

processes was insignificant compare to that by transport and mixing processes in the early 

stage of the spill, but the importance of these processes increased with time as the turbulent 

mixing diminished. In the late stage, the effect of flow regime on the persistence of the toxic 

contaminant became significant because the reduction of MITC concentrations was primarily 

accomplished by physico-chemical reactions. In the overflow, the toxic plume moved more 

slowly in the reservoir and experienced greater chemical loss (kinetic degradation) than in the 

interflow. The model can be used to assist in spill control, field sampling and contamination 

remediation, and reservoir management including closure of water intakes. 

Introduction 

The production efficiency of modem agriculture is in part attributed to the use of 

various agricultural pesticides such as insecticides, fungicides, and herbicides. Use of these 
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chemicals is expected to continue due to an increasing food demand in the world. However, 

their extensive transport, intensive use, and accumulation in agricultural lands has also 

caused various environmental pollution either by acute or chronic exposures. For example, 

accidental spills of toxic pesticides into rivers and reservoirs severely affected fisheries and 

local water supply systems in a short time period (Capel et al 1988; Chatteijee 1991). In the 

Midwest of United States, the occurrences of peak pesticide concentrations during late spring 

and early summer due to short-term runoff events are seriously concerned because of its 

potential adverse impacts on aquatic organisms and human health (Thurman et al. 1991; 

Goolsby et al 1993; Hallberg 1996). The contamination levels of some pesticides in streams 

and reservoirs occasionally exceed their maximum contamination levels (MCL) for drinking 

water. Chemical spill into a reservoir is not a matter of frequent incident, but the 

environmental and economic losses can be fatal for a community, in particular, if the 

community is heavily rely on the reservoir for water supply. Therefore, adequate 

understanding about the fate of off-site transported toxic chemicals in a reservoir during a 

peak loading period is crucial to protect the scarce water resources from various pollution. 

Once a toxic chemical spill or runoff entering a surface waterbody, its fate and transport 

processes are govemed by various factors including flow conditions, chemical and biological 

conditions of the waterbody, weather, and properties of the toxicant. In a reservoir, the 

processes can be furthermore complicated if the waterbody is stratified, and inflow forms a 

density current due to the temperature difference between river and ambient waters. The fate 

processes can be heavily influenced by various reservoir flow regimes, i.e., overflow, plunge 

flow, underflow, and interflow, depending upon its physico-chemical properties. Some 

chemicals are potentially more degradable through volatilization, photolysis, and oxidation if 

inflow forms an overflow regime because sufficient turbulence, sunlight, and oxygen are 

available near the surface of a reservoir. Therefore, a prediction tool for reservoir 

hydrodynamics and kinetics of toxic substances is needed for providing prompt information 

about the persistence and exposure level of a toxic chemical during a spill or runoff. 

The objectives of this study are to develop a two-dimensional (2D) reservoir toxic 

model, test the model against field data, and apply the model to investigate the effect of 
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reservoir flow regimes on the fate and transport of a volatile toxic compound during a spill 

event. The toxic model was constructed, by developing a toxic submodel and incorporating 

into an existing hydrodjoiamics and transport model, to simulate unsteady vertical and 

longitudinal distribution of a toxic chemical in light of various transfer and transformation 

processes. The model was tested against the filed data collected firom the Shasta Reservoir, 

California, during a spill event. Observed and simulated concentrations were used to analyze 

the fate and transport processes of the spilled pesticide, methyl isothiocyanate (MITC), under 

various flow regimes, plxmging flow, underflow, and interflow. A case smdy was attempted 

to examine the effect of two different flow regimes, interflow and overflow, on the 

degradation of MITC. The development of the toxic model enhances the versatility of the 

original reservoir model and provides an effective tool for describing and predicting the 

behavior of toxic contaminants in a stratified reservoir. 

Previous Studies 

The effects of flow regimes on reservoir water quality were studied as early as 1947 

(Churchill 1947). Thereafter, many researchers have investigated the influence of reservoir 

flow regimes on dissolved oxygen (Kim et al. 1983; Martin 1988) and nutrient dynamics 

(Martin and Ameson 1978; Gloss et. al 1980; Carmack and Gary 1982; Kermedy and Walker 

1990). However, their influence on toxic chemicals was rarely studied due to the limited field 

data and the lack of mathematical model that requires reliable hydrodynamics and reaction 

kinetics. Over the past decade several reservoir water quality models have been developed: 

WQRRS (USACE Hydrologic Engineering Center 1985), HEC-5Q (USACE Hydrologic 

Engineering Center 1986), MINLAKE (Riley and Stefan 1987), and WASPS (Ambrose et al. 

1993). WQRRS, HEC-5Q, and MINLAKE are one-dimensional (ID) models that developed 

to simulate the vertical distribution of water temperature and conventional constituents such 

as dissolved oxygen and nutrient in a lake and reservoir. WASPS is a recent model that 

designed to simulate various pollutants in most type of surface water system (Ambrose et al. 

1987, 1993). However, the model employs a compartmental approximation and its 

hydrodynamic submodel (DYNHYD5) solves the ID equations of continuity and 
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momentum. Therefore, WASPS is not pertinent for a stratified waterbody (Ambrose et al. 

1993). To simulate the fate and transport processes of a toxic chemical taking into account 

flow regime effects in a stratified reservoir, a mathematical model should be able to 

accurately simulate both the reservoir hydrodynamics and kinetics of chemical reaction 

processes. Therefore, an unsteady, two-dimensional (in the longitudinal and vertical 

directions) model is required for this purpose. 

The laterally integrated 2D hydrodynamics and transport model, CE-QUAL-W2 (Cole 

and Buchak 1994), has been broadly used for the modeling of water temperature and 

conventional constituents in reservoirs not only in the United States but also in many other 

countries (Gordon 1980, Kim et. al 1983, Martin 1988, Bath and Tinmi 1994). Its application 

for toxic contaminants, however, has been limited due to the lack of a toxic modeling 

component. Chung and Gu (1998) applied the model to simulate and analyze the transport of 

a toxic pesticide that spilled into the Shasta Reservoir, California in 1991 (Figure 1) by 

treating the toxicant as a conservative substance. The model accurately predicted the field 

measurements of water temperature and field observations of plimie intruding depth and 

thickness. However, the application was only bounded to the transport and mixing processes 

of a tracer. To understand the effectiveness of physico-chemical reaction processes and 

behavior of the toxic contaminant under various flow regimes, the development of a toxic 

submodel is necessary. 

Model Development 

Governing Equations 

A stationary sediment bed condition was assumed because it is quite valid in reservoirs 

and lakes of relatively great depth to which wind effect does not extend. Toxic substances 

may decay in the adsorbed particulate form, but decay was assumed to occur only in the 

dissolved phase to simplify the processes (Schnoor, 1996). A linear sorption-desorption 

kinetics was adopted because chemical concentrations in reservoir water are mostly 

environmentally relevant, i.e., less than one-half water solubility. An instantaneous local 

equilibrium was assumed for sorption process since the time scale for sorption reactions is 
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Figure I. Map of the spill site and sampling stations in the Shasta Reservoir. 
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much smaller than that of other kinetic and macroscopic transport (advection and diffusion) 

processes in reservoirs (Thomann and Mueller 1987; Schnoor et al. 1992). 

With the assumptions, total chemical concentrations in the water column (C^^^) and bed 

sediments (C^b) formulated by considering the mass conservation in water column: 

mc.,.) ^ msc.,.) ^ Amc,.) ^ X,, d x:,. 
Bet B& B& B& ' Sc Bdz ' ck 

- A.C,..)-(K, +K„+Ko + K, 
y 

+ ~fp.w^,.w+'^.VPS (I) 

<5i(SC,j,) K, 

(2) 
Z 

where subscripts t, d and p denote the total, dissolved, and particulate phases of a chemical, 

respectively; subscripts a, w and b denote air, water, and bed, respectively; fd and fp are the 

fractions of dissolved and particulate chemicals to the total chemical; t is time; x is 

longitudinal Cartesian coordinate (positive to the right); B is waterbody width; U and W are 

longitudinal and vertical flow velocities; is longitudinal constituent dispersion coefficient; 

Dj is vertical constituent dispersion coefficient; Kf is diffusive exchange rate between water 

colunm and pore water of the bed; (f> is the porosity of the bed sediments; Kp is photolysis 

rate constant; Kh is hydrolysis rate constant; Kq is oxidation rate constant; Kb is 

biotransformation rate constant; H is Henry's constant; Cq is vapor phase concentration; O^ps 

is the nonpoint source (NPS) mass flow rate per unit volume; is the net settling velocity of 

sorbed chemical; z is the depth of water from water surface; and y is the distance from 

bottom of a reservoir. The first term of right hand side (RHS) in (1) is the diffusive exchange 

of dissolved toxicant between sediment and water column. The second term is the 

degradation of dissolved toxicant due to photolysis, hydrolysis, oxidation, and microbial 

decay. The third term is the air-water exchange of the toxicant due to volatilization. The 
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fourth term is the net settling of the chemical in the particulate phase. The model uses a net 

settling velocity as an input for sediments that does not explicitly account for particle type, 

grain size, density, viscosity, and turbulence. The last term is the extemal NPS loading. The 

second term of RHS in (2) is the degradation of dissolved toxicant in bed sediment due to 

hydrolysis, oxidation, and microbial decay. Chemical kinetic reaction rates and model input 

parameters can be determined from field and laboratory experiments, estimation using 

chemical properties, and previous literature (Lyman et al., 1982; Schnoor et al. 1987) 

Sediment transport for water column and reservoir bed were formulated using the 2D 

laterally integrated advection-difiusion equations: 

^ msc,)  ̂ djWBC,) ^ = 

Bdt Bdx Bdz B3c ^ dx. Bdz ' dz 

(3) 
Az Ar 

d{BC,) diu.BC,) d{w,BC,) _ v 

Ba Bex Baz Az Az 

where Q is sediment concentration including inorganic and organic (detritus) sediments in 

water column; is lateral mass flow rate of sediments per unit volume for water column; 

is net settling velocity of suspended solids; C„ is suspended solids concentration; Az is cell 

thickness; is detritus decay rate; is net detritus settling rate; and C^, is detritus 

concentration in water column; ui, and are longitudinal and vertical bed load velocities; Cb 

is the total bed sediment concentration; is rate multiplier for organic matter; K, is organic 

bed sediment decay rate; and qi, is lateral mass flow rate of sediments per unit volume for bed 

sediments. By assuming a stationary bed condition (i.e., uf, and = 0), equation (4) 

simplified to: 

Bat Az Az 
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Physical, Chemical and Biological Processes 

The schematic description of transport and transformation processes of toxic substances 

in a reservoir system is presented in Figure 2. A partition coefficient (K) was used to 

determine the fractions of dissolved and particulate chemical forms to the total chemical 

based on the linear sorption-desorption kinetics. There are three different equilibrium phase 

partitioning models that are available to calculate a partition coefficient (Bierman, 1994); 

conventional two phases model, three phases model, and particle interaction model by Di 

Toro (1985). The two phases and particle interaction models were incorporated into the 

model because it is too difficult for the three phases model to separate and characterize the 

third phase (non separable particles plus dissolved organic carbon) (Bierman, 1994). Thus, 

the distribution of the toxicant between particulate and dissolved phases was determined 

dependent upon the partition coefficient of a chemical and the sediment concentration in a 

waterbody. 

Dissolved chemical in water column may transfer to interstitial water in the bottom 

sediment by diffusion process in the initial stages of a chemical spill, or vice verse may occur 

during the recovery phase depending on the gradient of dissolved chemical concentrations. 

The mass-transfer between bottom sediment and overlying water column was estimated as a 

function of molecular weight (M) of a chemical and porosity of bed sediments using the 

equation by Di Toro et al. (1981) as follows: 

Kj. = \9(l>{My 

The amount of chemical loss due to photolysis was computed as a fimction of the 

quantity and wavelength distribution of incident light, the light absorption characteristics of 

the chemical, and the efficiency at which absorbed light procedures a chemical reaction. A 

first-order reaction constant was used to estimate the rate of photolysis (Thomann and 

Mueller, 1987): 
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Figure 2. Schematic of transport and transformation processes of a toxic substance in a 
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K D A  (7) 

where K^o is the direct near surface photolysis rate; lo is the daily amount of incoming solar 

radiation at the water surface; 4 'is the light intensity at which Kjo was measured; D is the 

radiance distribution function; Do is the radiance distribution function near the surface; and 

Ke(^mco) is the net light extinction coefficient at Xmea, the wavelength of the maximum light 

absorption. Extinction coefficients for water, inorganic, and organic sediments were used to 

calculate a net light extinction coefficient, Kq (Cole and Buchak 1994) 

Hydrolysis is a major decay process in which a chemical compound reacts with water 

molecules and results in a cleavage of a chemical bond. A new compound with either the 

hydrogen or hydroxyl bond may be formed. Generally, hydrolysis is a second-order reaction 

because of dependence on the molar concentrations of [H'], [OH ], or water mediators 

(Schnoor, 1996; Thomeinn and Mueller, 1987). A pseudo-first-order rate constant Kh = Kn-^ 

ATqP"] + Ar6[0H'] was used, where Kn is the neutral hydrolysis rate, Ka is the acid catalyzed 

hydrolysis rate, and Kf, is the base catalyzed hydrolysis rate. Arrhenius function was used to 

adjust the rate with temperature. 

Toxic chemicals can be oxidized by a reaction with either dissolved oxygen or free 

radicals such as peroxyl radicals R00«, alkoxy radicals RO., hydrogen peroxide H,0;, and 

hydroxyl radicals .OH in natural waters (Schnoor, 1996). A pseudo-first-order reaction rate 

constant was used to compute degradation of a chemical by oxidation assuming that the rate 

of free radical formation (oxidant) is relatively constant (steady state). The rate was adjusted 

using Arrhenius function depending on water temperature. 

Biotransformation is the microbially mediated decay processes by which a chemical is 

degraded by bacteria and fungi. It may occur with oxygen (aerobic) or without oxygen 

(anaerobic). The model was designed to treat the biotransformation process either by second-

order or by pseudo-first-order icinetic reactions based on the Monod equation: 
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^ _ f^max ^ (S) 
dt y, dt y, ' 

where Cg is the bacterial concentration; is the bacterial yield coefficient; is the 

maximum specific growth rate; and K, is the half-saturation constant. The biotransformation 

rate was adjusted with water temperature 

Two-film theory (Whitman 1923; Mackay 1982; O'Connor 1983) was used to compute 

the gaseous transfer of chemical from air to water and water to ziir. The transfer rate was 

proportional to the concentration gradient between the chemical in water column and in the 

overlying atmosphere. The conductivity was influenced by both physico-chemical properties 

of a chemical and environmental conditions at the air-water interface. The overall 

volatilization transfer coefficient, was given as follows: 

I I ,  1 (9) 
k ,  K ,  K ^ H  

where AT/ is the liquid film coefficient and Kg is the gas film coefficient. The value was 

computed as a function of the chemical characteristics (H, Ki and K^, water velocity, and 

wind speed. Since the transfer coefficient for the open bodies of water such as reservoir and 

lake are largely affected by wind, O'Connor (1983) and Mackay (1982) equations were 

incorporated into the model to estimate the liquid and gas film transfer coefficients. 

Numerical Method and Programming Procedure 

The governing equations were solved using the finite-difference solution method as 

used in the laterally integrated hydrodynamics and mass transport model, CE-QUAL-W2 

(Cole and Buchak 1994). The dependent variables are water surface elevation, pressure, 

density, horizontal and vertical velocities, and toxicant concentration. The independent 

variables are longitudinal distance, flow depth, and time. The flow chart in Figure 3 briefly 

describes the overall algorithms of the model and the way how the toxic submodel was linked 

to the original model. The free water surface elevation and horizontal momentum are 

computed simultaneously in the model based on an implicit fmite-difference scheme, which 
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Figure 3. Flow chart of the 2D reservoir toxic model. 
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allows the use of reasonable time scale for field application over entire stratification cycles 

(Martin 1988; Cole and Buchak 1994). The equations for toxicant and sediment transport 

were solved using the explicit QUICKEST (Quadratic Upstream Interpolation for Convective 

Kinematics with Estimated Streaming Terms) finite difference scheme (Leonard 1979) that 

was used for temperature simulation in CE-QUAL-W2 (Cole and Buchak 1994). Vertical 

turbulent transfer of toxic contaminants was determined from the vertical shear of horizontal 

velocity and a density gradient dependent Richardson number fiinction (Cole and Buchak 

1994). The toxic sub-program was created and linked using the Microsoft Fortran 

Powerstation program. Minimum change in the original model was attempted to incorporate 

the toxic model. The physical, chemical, and biological properties of a toxic chemical and its 

kinetic reaction rates need to be provided through an input file. The model can compute the 

various degradation processes either independently by providing individual kinetic reaction 

rates or collectively by providing a lumped transformation rate or half-life value. A time-

variable half-life value can also be specified in the model. 

Boundary and Initial Conditions 

The model generates the vertical and longitudinal distributions of a toxic chemical in 

response to time-varying boundary conditions that include the flows and contaminant 

loadings from upstream, tributaries, and distributed NPS; the discharges of contaminant 

through outflow and lateral withdrawals; surface precipitation and evaporation; and 

meteorological changes over time. The time-varying flows and mass loadings can be defined 

as either a step fimction or linearly interpolated value between two data points. The 

distributed NPS loading of toxicants from a watershed can be produced with the help of field-

or watershed- scale NPS models. 

The initial toxic substance and sediment concentrations in the water column can be 

specified as either a uniform value, a single vertical profile for all segments, or a vertical 

profile for each segment. In bed sediment, they can be specified as either a uniform value or a 

longitudinal profile for each bottom layer. If non-uniform initial conditions are preferred, a 

grid-wide vertical or longitudinal profiles should be provided as an input file. 
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Model Application 

The model was applied to the Shasta Reservoir spill for investigating the physical and 

chemical reactions of MITC under various flow regimes. In the previous study (Chung and 

Gu 1998), MITC was treated as a conservative tracer. The justification for the assumption 

was that the level of MITC degradation by kinetic processes (hydroloysis, photolysis, and 

volatilization) is insignificant in the deep and cold reservoir environments with low level of 

turbulence, lights, and oxygen. In the present application, dilution of contaminant 

concentration due to mixing, reduction due to physico-chemical reactions, and reduction by 

artificial mixing were quantified using observed and simulated MITC concentrations. 

Spill and Site Descriptions 

On July 14, 1991, approximately 49,000 to 72,000 liters of VAPAM liquid formulation 

were estimated to have spilled into the Sacramento River, California (Figure 1) (Rosario et al. 

1994; Gu et. al 1996). VAPAM, sodium methyl dithiocarbamate (Na-MDTC), is a pesticide 

with a fungicidal, nematicidal and herbicidal action (Worthing 1987). The parent compound 

Na-MDTC decomposes into more stable products, primarily the far more toxic chemical 

methyl isothiocyanate (MITC, CH3N=C=S) in water. During traveling the long Sacramento 

River, which provided good envirormients such as high level of lights and oxygen for the 

chemical reactions, Na-MDTC transformed into more toxic MITC through oxidation and 

photolysis (Wang et al. 1997). The LCjq (96-h) of MITC, that the lethal concentration at 

which 50% mortality occurs from 96 hours exposure time, for bluegill is 130 fig/1 (Worthing 

1987), indicating the strong toxicity of the chemical. A great number of fish died during the 

spill. A large portion of the MITC was vaporized into the air and impaired human health in 

the vicinity of the spill site (Chatterjee 1991). The residual MITC, eventually, entered into 

the Shasta Reservoir at midnight of July 16. 

Water sampling activities were conducted by the California Regional Water Quality 

Control Board in order to keep track of the spill after it entered the Shasta Reservoir (Figure 

I). The spill managers marked the contaminant plume with the red dye rhodamine WT to 

track its progress in the reservoir because the plume plimged into the reservoir due to the 

temperature difference between the incoming river water and the ambient water. The field 
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measurements also served to determine the contamination level of the waterbody and the 

speed at which the plume was moving in the river and reservoir towards the Shasta Dam. An 

artificial mixing device was installed at the distance of about 2.6 km downstream from the 

head of reservoir to mix the contaminant plume with the reservoir water after the chemical 

spill. The device stirred up the plume with gigantic pumps, and shot great gusts of air into the 

plume. 

The reservoir was stratified during the spill period. The observed temperatures in the 

reservoir showed that vertical and longitudinal variations were significant, but lateral 

variations are generally small in the upper reach from the head of the reservoir to its 

confluence with the Squaw River arm (Chung 1996). Water temperatures in the reservoir 

were in the range of 19 to 27.5 "C in the epilininion and 7 to 16 "C in the hypolimnion. The 

river flow entering the reservoir averaged 7.5 m"^/s with a temperature of 18-24 °C during the 

spill. Under these conditions, the contaminated river flow plunged after entering the reservoir 

and formed an underflow and interflow during the spill period (Chung and Gu 1998). 

Degradation Processes of MITC 

The degradation of MITC due to physico-chemical reactions is dependent upon the 

chemical properties and environmental conditions of the reservoir such as the level of 

turbulence, temperature, dissolved oxygen, and solar radiation that are all ftmction of water 

depth in a stratified reservoir. MITC is a volatile toxic chemical that has high solubility (7600 

mg/L) but low adsorption potential (Octanol-water partition coefficient, = 23.5) in water. 

The main physical and chemical properties of MITC are shown in Table 1. In general, MITC 

is known to be volatile and reactive when exposed to elevated temperature, oxygen level, and 

sunlight. However, its fate and transformations in surface waters are not well understood 

(Rosarioetal. 1994). 

Previous studies concluded that the primary pathways of MITC degradation in surface 

water are volatilization and hydrolysis (Rosario et al. 1994; Tomlin 1994; Wang et al. 1997). 

Direct photolysis rate of MITC in surface water is a ftmction of water depth (Zepp and Cline 

1977). Draper and Wakeham (1993) found that MITC is resistant to photodegradation in 

water. No detectable MITC photolysis occurred after 5 hours of irradiation in their laboratory 
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Table I. Physical and chemical properties® of methyl isothiocyanate (MITC). 

Property Unit Value 

Molecular weight g/mol 73 

Solubility mg/l 7600 

Vapor pressure at 20 °C kPa 2.7 

Henry's constant atm-mVmol 0.26x10-^ 

Octanol-water partition - 23.5 

Specific gravity at 20 °C g/cm^ 1.048 

Diffusivity in water*" cmVsec 1.26x10-^ 

Diffusivity in air*" cmVsec 0.109 

®C. Tomlin (1994). 

''Calculated as a function of molecular weight. 
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experiments. Therefore, the MITC degradation by photolysis was assumed insignificant 

during the spill, although this may lead imderestimation of chemical degradation to some 

extent. The sorption of MITC onto suspended solids was negligible in the reservoir because 

of a low suspended solids concentration in this site and highly soluble characteristics of 

MITC (Wang et al. 1997). The firaction of dissolved MITC, f^, was estimated as a function of 

partition coefficient, suspended solids concentrations, and the fraction of organic matter 

(Figure 4). More than 97% of MITC remained dissolved form because the suspended solids 

concentration was far below 1000 mg/1 during the spill. 

Therefore, MITC concentrations were degraded in the simulations by volatilization and 

hydrolysis as well as flow dilution. The rate of volatilization from water to air was computed 

using two-resistance theory. The rate was influenced by both chemical properties such as 

molecular weight, Henry's constant, and environmental conditions at the air-water interface, 

i.e., turbulence controlled by wind speed and current velocity, and water depth. The 

hydrolysis of MITC through the reaction with water molecules is a strong flmction of the pH 

level of water (Tomlin 1994) (Figure 5). The first-order hydrolysis rate constant (K^) for 

MITC was obtained from its half life (tj^j) value in the neutral water (490 hours at pH = 7) 

using the relation of Kh= 0.693/t,/2. 

Boundary and Initial Conditions 

The time-varying MITC boundary concentrations were specified at the upper end of the 

computational domain, Doney Creek (Figiire 6). Sampling was conducted on an hourly basis 

during from midnight of July 16, when the plume arrived at Doney Creek, to 10:10 a.m. next 

day. Only three measurements were taken from then until noon July 19. The peak 

concentration (CJ passed Doney Creek at 5:00 a.m. on July 17. Most of the chemical plume 

had entered the reservoir by 10:00 a.m. on July 17. The measured concentrations at the 

reservoir head varied with time, from 2 mg/l at midnight on July 16 to 35 mg/1 (peak) at 5:00 

a.m. and 5 mg/1 at 10:00 a.m. on July 17, and dropped to a non-detectable level (< 0.001 

mg/1) at noon on July 19. Initial and boundary conditions for flows, temperature, and weather 

conditions were set based on the observed data. A detail information for modeling approach 

and input data was documented in the previous publication (Chung and Gu 1998). 
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Figure 4. The fraction of dissolved form to the total MITC concentration in water as a 
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Figure 5. The first-order hydrolysis reaction rate and half-life of MITC in water as a function 
of pH. 
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Figure 6. The inflow boundary MITC concentrations that measured at the upper head of the 
Shasta Reservoir (Doney Creek) during the spill. 
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Results and Discussion 

Reservoir Flow Regimes 

Flow velocities and water temperature were used to depict the reservoir circulation and 

mixing patterns during the spill. Figures 7a and 7b show flow velocity vectors and contour of 

water temperature, respectively during the spill period at 9:00 a.m. on July 23. It should be 

noted in the vector plot that only part of the reservoir (near inflow boundary) is plotted due to 

the large spatial variations in velocities between upstream and downstream. The direction and 

magnitude of the vectors represent the residual velocity of longitudinal and vertical 

components. The contaminated plume formed an underflow and interflow after plunging near 

the head of the reservoir (about 0.8 km downstream from the head) due to the temperature 

difference between inflow and ambient water. The vector plot obviously shows a 

considerable vertical motion of the plume within the underflow region driven by the density-

induced negative buoyancy forces. The interflow created at the depth of 8 to 10 meters below 

the water surface when the plume detached from the reservoir bottom. The temperature 

contour shows that the inflow with lower temperature (18 to 24 °C) than the ambient water 

(26 to 28 °C ) plunged into the reservoir and traveled along the reservoir bottom until it 

reached its equilibrium temperature (21 - 22 °C) about 8 m below the water surface. Both the 

velocity vector fields and temperature contour demonstrated that the model successfully 

captured the behavior of various flow regimes, plunge flow, underflow, and interflow after 

the contaminated river water entered the reservoir. 

Fate and Transport of MITC 

Longitudinal and vertical distributions of MITC concentration in the reservoir are 

presented in Figure 8 using iso-concentration contours that obtained after 2, 30, and 60 hours 

from the time the peak passed the upstream inflow boundary. The contaminant degradation 

due to physico-chemical reaction processes, which was obtained by subtracting the 

concentrations of MITC from concentrations of a tracer (a conservative matter), are also 

given to determine the effectiveness of these processes in the total MITC reduction in the 

various flow regimes. As expected, more chemical losses occurred by kinetic reactions near 

the core of the plume where peak or maximum concentrations were located than plume edge 
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Figure 7. The (a) flow velocity vector field and (b) contour of reservoir water temperature in 
the Shasta Reservoir during the spill at 9:00 a.m. on 7/23/91. 
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Figure 8. Contours of the simulated (a) MITC concentrations and (b) concentration difference 
between tracer and MITC that represents the amount of contaminant reduction by 
physico-chemical reactions. 
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because the chemical decay rate is first-order function to the chemical concentration. The 

amount of the toxicant degradation by reactions in the plunge flow and underflow was greater 

than in the interflow regime. This is mainly attributed to the sufficient turbulence that 

developed near the surface of the reservoir by wind and flow velocities that accelerated 

volatilization of the contaminant. The contribution of chemical reactions to the total MITC 

reduction decreased as the plume plunged and formed the underflow and interflow in the 

deep reservoir environments where the strong stratification limits the gaseous transfer of the 

contaminant from water to air. In the interflow regime, the reduction of concentrations was 

mainly achieved by hydrolysis of the chemical and mixing v^th ambient water rather than by 

volatilization. 

The effectiveness of chemical reactions in the total concentration reduction, Er, was 

quantitatively analyzed using the predicted maximum chemical concentrations at different 

times or in different flow regimes (Table 2). In Table 2, C,^ and denote the predicted 

maximum tracer and MITC concentrations in the reservoir after time t (hours), respectively. 

The total concentration reduction after time t was obtained by subtracting C„i,c from the peak 

concentration at the inflow boundary, C^. The total reduction rate (R^), which was defined by 

I00x(Co- C„„J/ Co, increased exponentially with time. More than 80% of the chemical 

concentration reduction was accomplished within 30 hours after the peak passed the upper 

boundary of the reservoir. A dilution index (I^) and a reaction index (Ir) were used to 

separate the contributions of flow dilution by mixing processes and chemical decay by 

physico-chemical reaction processes during the spill period. The Ip and Ir values can be 

varied from 0 to 100%, and their sum should be always equal to 100%. The iadex value 

100% indicates that the reduction of chemical concentrations totally accomplished by the 

dilution (if Ip = 100%) or reactions (if Ir =100%) during time t. Therefore, these indices 

designate the accumulated contribution of each process. The Er value was used to determine 

the effectiveness of physico-chemical reactions for a local time period. A large Er value 

indicates a great effectiveness of chemical reactions at time t. 

The Ir value in the plimge flow region reached as much as about 7% due to the high 

chemical concentrations and flow turbulence that accelerated the MITC loss through 
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Table 2. The effects of flow dilution and physico-chemical reactions on total MITC reduction 
versus time in various reservoir flow regimes. 

t(hrs.) Flow regime c ^traccr Cmiic Co- RT ID IR ER 

(mg/l) (mg/l) (mg/l) (%) (%) (%) (%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

0 Inflow 35.0 35.0 0.0 0.0 - - -

3 Plimge flow 22.9 22.0 13.0 37.1 93.1 6.9 3.9 

12 Underflow 9.9 9.1 25.9 74.0 96.9 3.1 8.1 

30 Interflow 5.6 5.0 30.0 85.7 98.0 2.0 10.7 

57 Interflow 3.4 3.0 32.0 91.4 98.7 1.3 11.8 

81 Interflow 2.8 2.4 32.5 92.8 99.1 0.9 14.3 

1) Time elapsed after the peak passed the upstream boundary (Doney Creek). 

2) Reservoir flow regime. 

3) Peak tracer concentration (dilution effect). 

4) Peak MITC concentration (dilution and physico-chemical reactions effect). 

5) Total reduction of peak MITC concentration. 

6) Total MITC reduction rate, R-r = 100x(Co- C„j,J/ C^ 

7) Dilution index, Iq = lOOx(Co- C^J/(C<,- C^jJ 

8) Reaction index, IR = 100x(C^„- C„, J/(C„- C„jJ 

9) Effectiveness of chemical reactions at time t, ER= 100x(C,^ ,- /C^acer.t 
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volatilization. The Ir decreased to 2-3% in the underflow and to less than 1% after 81 hours 

in the interflow, but the Er value increased with time as the turbulent mixing decreased. The 

results suggest that although the reduction of the contaminant concentrations was primarily 

attained by flow dilution due to transport and mixing processes (i.e., Iq > 90%) in the early 

stage of the spill, the influence of the physico-chemical reaction processes on the chemical 

reduction can be more significant in the late stage of the spill. If so, it is possible that the 

persistence of the spilled chemical in the reservoir is more likely dependent upon the decay 

processes rather than the turbulent mixing processes in the late stage. A long persistence of 

the high level of MITC concentrations = 2.4 mg/1 after 81 hours) in the reservoir has a 

significant meaning for the reservoir ecosystem and water supply because the LCjo for 

bluegill is 130 p.g/1. 

Observed and simulated MITC concentrations at different stations are presented in 

Figxire 9. The results show that the contribution of chemical reactions to the total MITC 

reduction was not significant during the spill. The model results were slightly improved after 

taking into account the chemical reactions. The large deviation between observed and 

simulated MITC concentration at the Station 1 may have two reasons. First, inaccurate 

prediction of wind mixing effects in the epilimnion due to lack of wind direction data in this 

site. Second, a continuous break down of small amount of residual Na-MDTC near the 

reservoir surface. Using natural log scales and linear relationships between Ln(C/Co) and 

Ln(t) Figure 10 shows the observed MITC and simulated tracer and MITC concentrations 

versus time. The slopes obtained firom the linear regressions for the tracer and MITC 

concentrations represent the dilution rate (q) and the combined rate of dilution and kinetic 

reactions (q + k), respectively. Thus, the difference (0.025 hr"') between q and q + k is the 

overall MITC kinetic reaction rate (k) during this period. The ratio of overall kinetic reaction 

rate to dilution rate (k/q) was about 4% along the various flow regimes. This is well agreed 

with the results obtained in Table 2, IR = 0.9 - 6.9%. 

The influence of artificial mixing device on the additional mixing of spilled plume was 

estimated using the observed and simulated maximum MITC concentrations at sampling 

Stations 9 and 16 (Figure 11). The results indicate that the artificial mixing device reduced 
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Figure 9. Observed and simulated MITC concentrations at selected sampling stations during 
the spill. 
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Figure 10. The linear relationships of observed and simulated MITC concentrations versus 
time during the early stage of the spill. 
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the chemical concentrations additionally about 0.84 and 0.73 mg/1 at Stations 9 and 16, 

respectively. These are notable reductions if the toxicity of the chemical, LCjo = 0.13 mg/I for 

bluegill, is considered. About 0.5 and 0.35 mg/1 reduction in MITC concentrations were due 

to chemical reactions at Stations 9 and 16. The artificial mixing device effectively 

contributed to the reduction of MITC concentrations to a level less than the LCJQ for bluegill 

in a short time after the spill. 

Effect of Flow Regimes 

The effect of reservoir flow regimes, interflow and overflow, on the persistence of the 

toxic contaminant in the late stage of the spill was quantified to examine the hypothesis that 

an interflow tend to reduce the degradation of MITC and an overflow enhance it. An 

overflow regime was created by changing the river water temperatures from 18-24 °C to 30 

°C while all other conditions were kept unchanged. The spatial distributions of a conservative 

tracer (top) and MITC (bottom) concentrations for the interflow and the overflow regimes are 

displayed in Figure 12, showing concentration contours were 10 days after the peak 

concentration passed the inflow boundary. 

In the interflow situation, the plume resided within the thermocline zone. The plume 

spread out in the longitudinal direction at 6-10 m deep below the water surface while the 

head of contaminant plume reached up to 15 km from the upstream boundary. The peak 

chemical concentrations diluted to 350-450 p.g/1 by flow mixing effect only, which is 

indicated in the tracer concentrations. The combined effects of dilution and physico-chemical 

reactions resulted in more reduction of MITC concentrations to 130-200 |a.g/l. In the overflow 

case, the plume stayed near the surface of the reservou: and the contaminant head reached 

only up to 10 km from the upstream boundary. The peak concentration of tracer was about 

350-450 n-g/l, indicating that the level of dilution due to flow mixing in the overflow 

situation is similar to that in the interflow situation. However, the overflow toxic plume 

moved more slowly in the reservoir and experienced greater chemical loss (kinetic 

degradation) than the interflow. This is because the surface transport of the contaminant 

provided a suitable environment for great portion of MITC to be evaporated into the air. The 

level of contaminant concentrations was less than 60 ng/l in most part of the reservoir. These 
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Figure 12. The spatial distributions of tracer (top) and MITC (bottom) concentrations in (a) the interflow regime and 
(b) the overflow regime after 10 days (7/26/91) in the Shasta Reservoir. 
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characteristics of an overflow regime may be considered as the positive aspects with respect 

to water quality management as drinking water intake and downstream discharge structures 

are generally located near the dam. The high level of chemical concentrations (> 100 |xg/l) 

was only located in a small area of the reservoir. An artificial mixing device can be 

practically used in that area to accelerate the degradation processes of the slowly moving 

contaminant plume. 

Figure 13 shows the maximum tracer and MITC concentrations versus longitudinal 

distance for the interflow and the overflow situations. The concentration difference between 

tracer and MITC represents the amount of MITC degradation that occurred due to chemical 

reactions. It is clearly shown that the effectiveness of physico-chemical reaction processes is 

greater in the overflow than in the interflow. The peak concentrations reduced to 460 (ig/1 by 

flow dilution effect only in both flow regimes. In the interflow, the physico-chemical 

reactions led to more reduction of the MITC concentrations, but the peak concentration (195 

|j,g/l) was still greater than the LC50 for bluegill (130 M-g/l). Great amount of MITC degraded 

by chemical reactions within the upper part of the reservoir (2-4 km from the upstream 

boundary) in the overflow. The peak concentration was 107 jj.g/1 which is less than the LC50 

for bluegill. 

The effects of reservoir flow regime on the fate and transport of MITC are summarized 

in Table 3. The reduction of the toxic contaminant was mainly achieved by flow dilution (i.e.. 

ID was greater than 95%) due to the transport and mixing processes in the early stage of the 

spill, but the effectiveness of chemical reactions (Er) increased with time as the turbulent 

mixing diminished. After 10 days, the values reached up to 57.6% and 76.7% for the 

interflow and overflow, respectively, indicating that the reduction of MITC concentrations 

primarily accomplished by physico-chemical reaction processes. Therefore, the persistence of 

the reservoir is dependent upon the effectiveness of chemical reactions in this stage. The 

persistence (or residence time) of the contaminant may be shorter if the inflow formed an 

overflow in the reservoir during the spill. An overflow may be the flow regime desirable for 

managing and remediation of a volatile toxic chemical spill in a reservoir during a short term. 

The results also suggest that the efficiency of the artificial mixing device, which was installed 
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Figure 13. The longitudinal profiles of maximum tracer and MITC concentrations 
in the (a) interflow and (b) overflow regimes after 10 days. 
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Table 3. Effects of reservoir flow regime on the fate and transport of the toxic contaminant, 
MITC, in the late stage of the spill. 

Parameters Flow regime Parameters 

Interflow Overflow 

Propagation length (km) 15.0 lO.O 

Tracer concentrations (|ig/l): 

Peak 460.0 460.0 

Spatial average 210.0 220.0 

MITC concentrations (jag/1): 

Peak 195.0 107.0 

Spatial average 90.0 31.0 

Reaction Index, IR (%) 0.76 1.10 

Effectiveness of reactions, ER (%) 57.6 76.7 

IR = Reaction index, 1^ = 100x(C^^- C„,J 

Er= Effectiveness of chemical reactions at time t, Er= 100x(Cttacer.,-
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in the interflow region (about 2.6 km downstream from Doney Creek), might be maximized 

if it was installed within 0.8 km downstream from the upstream boundary. This is because 

that an overflow would be created if the colder river water is mixed with the warmer ambient 

surface water before the plume plunged. 

Case Study 

A hypothetical case was investigated to examine the effects of reservoir flow regimes 

(interflow and overflow) on the propagation length, dilution, physico-chemical reactions, and 

spatial distribution of the toxic chemical in other situations through numerical experiments. A 

reservoir was assumed to be stratified in the vertical direction with a uniform water 

temperature of 26 °C in the eplimnion (0-5 m from the surface of reservoir) and 10 °C in 

hypolimnion zones (10-30 m), respectively. A linear decline of water temperature was 

assximed in the thermocline zone (5-10 m). The total length of 10 km reservoir reach was 

discretized into a single branch finite-difference grid consisting of 20 longitudinal segments 

with 0.5 km in length and 30 vertical layers with 0.5-1.0 ra in thickness. The slope and half-

angle of the reservoir were assumed 0.17° and 3°, respectively. 

Total six different cases were generated using the combinations of two flow regimes, 

interflow and overflow, and three inflow conditions (Table 4). Three different inflow 

conditions were characterized using Richardson number (Ri), the ratio of buoyancy force to 

inertia force, at the upstream boundary: 

\  p  —  p  ( 1 0 )  

Pa 

where Ug is the flow velocity at the inflow boundary, Pj^ is the river water density, is the 

ambient water density, g is the acceleration of gravity, and h^ is the inflow water depth. A Ri 

number greater than 1 indicates that the buoyancy force is relatively greater than the inertia 

force. A negative Ri number indicates negative buoyancy (downward force). The flow 

conditions for high, medium, and low Ri numbers were created by changing the inflow flow 

rate. The wind speed and air temperature were set for 2 m/sec and 26 °C to minimize the 
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Table 4. Reservoir flow regimes and inflow conditions used in the hypothetical case study. 

Case Regime T.„ Pin Qo Uo Ri Dominant force 

rc) (kg/m^) (m^/sec) (m/sec) 

1 Interflow 20 998.207 20 0.2857 -0.17 Inertia 

2 Overflow 31 995.327 20 0.2857 0.17 Inertia 

J Interflow 20 998.207 5 0.0714 -2.82 Buoyancy 

4 Overflow 31 995.327 5 0.0714 2.82 Buoyancy 

5 Interflow 20 998.207 1 0.0143 -68.3 Buoyancy 

6 Overflow 31 995.327 1 0.0143 68.3 Buoyancy 

Tj„ = Inflow water temperature. 

Pj„ = Inflow water density corresponding to Ti„ 

Qo = Inflow flow rate. 

Ri = Richardson number calculated using equation (10) with = 996.787 kg/m\ The 

negative sign denotes negative buoyancy force because Ap = Pj - Pi„ < 0. 
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weather effect. A constant flow rate and MITC concentration (C^ = 100 mg/1) (steady-state ) 

were specified at the upstream boundary for all cases. 

Figures 14 and 15 show the spatial distributions of tracer and MITC concentrations, 

respectively, after 20 days for different flow regimes and Richardson numbers. Comparisons 

of the concentration contours between the interflow and overflow indicate that the transport 

and physico-chemical decay processes of MITC are significantly affected by the flow 

regimes. The contaminant plume in the interflow experienced greater initial dilution due to a 

greater turbulent mixing in the plunge and underflow regions. However, after the initial 

mixing, the plume moved along the reservoir thermocline layer with insignificant 

concentration changes. In the overflow, although the initial mixing was relatively smaller 

than interflow, the chemical concentrations dropped significantly with distance. A distinct 

longitudinal stratification of MITC concentrations is observed due to the effective chemical 

decay processes through physico-chemical reactions such as volatilization and hydrolysis in 

the overflow. Based on the equivalent plume head concentrations, a greater plume length is 

observed in the interflow than in the overflow for Ri = 2.82 and 68.3. The length difference 

increased as the Ri number increases. 

The maximum tracer and MITC concentrations versus reservoir longitudinal distance 

are presented in Figure 16. The slope of a tracer line indicates the rate of dilution, while that 

of MITC indicates the rate of chemical degradation due to both mixing and decay processes. 

Although a greater initial mixing was obvious in the interflow for all flow conditions, the 

degradation rate of contaminant was always greater in the overflow than in the interflow due 

to the more effective decay processes in the overflow. A great amount of chemical decay by 

kinetic processes, which is seen firom the vertical difference between the tracer and MITC 

concentrations, occurred at the downstream part of the reservoir for low Ri number, and at 

the middle and upstream of the reservoir for medium and high Ri numbers, respectively. For 

the low Ri number (Fig 16a), which represents an inertia force dominant flow, the dilution 

rates were small in both flow regimes as indicated by the slopes of the tracer concentrations. 

As the inertia force decreased (Ri increased), the rate of chemical reduction increased in the 

overflow regime because of the reduced flow velocity (Table 4) that resulted in more time for 
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Tracer (mg/l) Tracer (mg/I) 

Overflow, Ri = 0.17 Interflow, Ri = - 0.17 

Tracer (mg/I) 

Interflow, Ri = - 2.82 Overflow, Ri = 2.82 

Tracer (mg/I) 

Interflow, Ri = - 68.3 Overflow, Ri = 68_5 

DISTANCE (km) DISTANCE (km) 

(a) (b) 

Figure 14. The spatial distributions of tracer concentrations in a hypothetical reservoir after 
20 days in the (a) interflow and (b) overflow for different values of Richardson 
number. 
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MITC (mg/l) MITC (mg/l) 

Interflow, Ri = - 0.17 Overflow, Ri = 0.17 

MITC (mg/l) MITC (mg/l) 

Interflow, Ri = - 2.82 Overflow, Ri = 2.82 

MITC (mg/l) MITC (mg/l) 

Interflow, Ri = - 68J Overflow, Ri = 68.3 

DISTANCE (km) DISTANCE (km) 

(a) (b) 

Figure 15. The spatial distributions of MITC concentrations in a hypothetical reservoir after 
20 days in the (a) interflow and (b) overflow for different values of Richardson 
number. 
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mixing and reactions, but no significant changes are observed in the interflow. This is 

primarily due to the strong stratification of the reservoir that interfered with the diffusive 

transport of the contaminant in the vertical direction in the interflow. 

Conclusions 

A two-dimensional reservoir toxic submodel was developed and incorporated into a 

laterally integrated hydrodynamics and transport model. The model is capable of simulating 

the fate and transport of various toxic contaminants, including sorption and desorption, 

photolysis, hydrolysis, oxidation, biotransformation, volatilization, diffusive exchanges 

between the bottom sediment and water column, and sediment transport and deposition in a 

reservoir. The model was applied to the Shasta Reservoir, California to investigate the effect 

of various flow regimes on the fate and transport of a volatile toxic compound (MITC) that 

was spilled into the reservoir. Predicted flow velocities, water temperature, and chemical 

concentrations clearly identified various reservoir flow regimes: plunge flow, underflow, and 

interflow that created during the spill period. 

The effectiveness of physico-chemical reaction processes for total reduction of MITC 

concentrations was determined for different time in various flow regimes. It was shown that 

in the underflow and interflow regimes the kinetic degradation processes of MITC were slow, 

and that resulted in a long persistence of the chemical during the spill. The amount of MITC 

loss by chemical reactions decreased as the plume plunged into deep layers of the reservoir 

and formed the underflow and interflow primarily due to a reduced volatilization rate in the 

deep reservoir. The dilution and reaction index values showed that reduction of the chemical 

concentrations was mainly achieved by flow dilution due to transport and mixing processes 

in the early stage of the spill. However, the effectiveness of the physico-chemical reaction 

processes for the chemical reduction increased with time as the turbulent mixing diminished. 

Numerical experiments were conducted to investigate the effects of reservoir flow 

regimes on the fate and transport of the toxic chemical. The results demonstrated that 

reservoir flow regime can substantially affect the persistence and transport of the volatile 

toxic contaminant in the late stage of the spill. The dilution levels in the interflow and 
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overflow regimes were similar, but the plume moved more slowly and experienced greater 

chemical loss in the overflow. The overflow regime resulted in a reduced toxic contamination 

level (less persistent), shorter plume length, and longer response time compare to the 

interflow. These differences may be considered in water quality management as water intake 

structures and fishery facilities or other recreational activities are mostly located downstream 

near the dam. Therefore, wherever or whenever possible and practical, an interflow should be 

avoid and an overflow should be used to lower contamination levels and to leave longer 

response time after a toxic spill. An overflow can be created intentionally through artificial 

mixing to minimize contamination after a toxic spill. The model and results obtained in this 

study can be used to assist in spill control, field sampling and contamination remediation, and 

reservoir management including closure of water intakes. 
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Notation 

The following symbols are used in this paper: 

<j» bed sediment porosity; 

the wave length of the maximum light absorption; 

maximum specific growth rate; 

Onp5 lateral nonpoint source mass flow rate per unit volume; 
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rate multiplier for organic matter; 

Az finite difference grid cell thickness 

C, vapor phase concentration; 

Cb sediment concentration in the stationary bed sediment; 

CB bacterial concentration; 

Cj dissolved chemical concentration; 

Cj, detritus concentration; 

C„„g maximum MITC concentration; 

Co peak concentration at inflow boundary; 

Cp particulate adsorbed chemical concentration; 

Cj sediment concentration in water column; 

Cjs suspended solids concentration; 

C, total chemical concentration; 

Cn,^ maximum tracer concentration; 

D radiation distribution function; 

Do radiation distribution function near water surface; 

vertical diffusion coefficient; 

ER the effectiveness of chemical reactions for the total concentration reduction; 

fj the fraction of the total chemical concentration that is dissolved; 

fp the firaction of the total chemical concentration that is particulate; 

H Henry's constant; 

r light intensity at which was measured; 

Ig the average daily amount of incoming solar radiation at the water surface; 

K partition coefficient; 

Kg acid catalyzed hydrolysis rate; 

Kb base catalyzed hydrolysis rate; 

KB biotransformation rate; 

Kjo direct near surface photolysis rate; 

Kj, detritus decay rate; 
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Kj extinction coefficient; 

Kf diffusive exchange rate between water column and pore water of the bed; 

Kg gas film coefficient; 

KH hydrolysis rate; 

k, volatilization rate; 

K, liquid film coefficient; 

K„ neutral hydrolysis rate; 

KQ oxidation rate; 

Kp overall photolysis rate; 

Kj organic bed sediment decay rate; 

K, half-saturation constant; 

M molecular weight of a chemical; 

qb the lateral mass flow rate of sediments in reservoir bed per unit volume; 

qi the lateral mass flow rate of sediments in water column per unit volume; 

R-j- total MITC reduction rate; 

Ub longitudinal bed load velocity; 

Vj deposition velocity of sorbed chemical in the air; and 

Vj the net settling velocity of sorbed chemical in water column; 

Vjj the net settling velocity of suspended solids; 

Wb vertical bed load velocity; and 

ya bacterial yield coefficient; 
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CHAPTER 3. ESTIMATING TIME-VARIABLE KINETIC TRANSFORMATION 
RATE OF ATRAZINE IN A RESERVOIR 

A paper to be submitted to the Journal of Environmental Engineering 

Se-Woong Chung and Rucchuan Gu 

Abstract 

The persistence of atrazine, one of the most applied herbicides in com cropping areas, 

in an aquatic environment is dependent upon environmental conditions, i.e., temperature, 

sunlight, and microorganism. As these conditions are changing seasonally, accurate 

determination of time-variable degradation rate is important in the prediction of the fate and 

transport of the chemical in surface water. A mass balance model was constructed to estimate 

time-variable kinetic transformation rate (or half-life) of atrazine in the Des Moines River 

and the Saylorville Reservoir. The half-life varied monthly from 2 to 58 days depending upon 

the environmental conditions. Simulated atrazine concentrations were compared with field 

data to validate the estimated half-life, which agreed reasonably well with the trends of 

observed values. A significant inverse relationship was obtained between the half-life and the 

hours of sunlight, showing the effectiveness of photodegradation. Estimated annual atrazine 

budget showed that reservoir outflows and kinetic transformations control most of atrazine 

loadings from the farm land into the reservoir. A case study, however, revealed that an 86% 

increase in atrazine uses could alter the reservoir water quality. A high level of concentrations 

occurred in the month of May and persisted for the rest of the year. The half-life values 

obtained for the study area can be used as an initial approximation of atrazine degradation 

rate in water quality modeling for other sites with similar environmental conditions. 

Introduction 

A frequent detection of herbicides in source and drinking waters is one of the major 

water quality issues for the aquatic ecosystem and human health in Iowa and the Midwestern 

United States (Thurman et al. 1991; Goolsby and Battaglin 1993; Pereira and Hostettler 
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1993). Atrazine [2-chloro-4-ethylamino-6-isopropylainino-l,3,5-tria2me] (Figure 1), a 

heterocyclic nitrogen compound, is one of the most extensively used herbicides for weed 

control in the com cropping area in the Midwest Com Belt. Atrazine can reach surface water 

system through various pathways; surface runoff, seepage flow, artificial drain flow, aerial 

drift during application and re-deposition in waters upon volatilization, and precipitation. 

Thus it has been found in surface water, groundwater, and even rainfall for three decades 

since its first use in 1959 (Richard et al. 1987; Nations and Hallberg 1992; Hallberg 1996; 

Hatfield et al. 1996). The United States Environmental Protection Agency (USEPA) ranks 

atrazine as a class C (possible) carcinogen and established the maximum contamination level 

(MCL) of 3.0 Jig/1 for drinking water, which is the limiting concentration at which adverse 

health effects would not be expected to occur for an adult from 70 years exposure (Richard et 

al 1995). 

Although extensive field monitoring studies of surface waters have detected atrazine 

concentrations that exceed the MCL between the late spring and midsummer in these 

agricultural area (Gooolsby et al. 1991; Thurman et al. 1991; Thurman et al. 1992; Goolsby 

and Battaglin 1993), only limited field studies have been conducted to understand the fate of 

atrazine in surface water because they are costly and technically difficult (Kolpin and 

Kalkhoff 1993). A mathematical model can be economically and practically applied to 

investigate the fate and transport processes of atrazine in a watershed and a waterbody and to 

assess the environmental impacts of various altemative upstream watershed management 

strategies on the quality of surface waters. However, it is important to accurately estimate the 

degradation rate or half-life (tg j) of atrazine for applying the model and investigating its 

persistence in a specific aquatic system because the behavior of atrazine is quite different 

under different environmental conditions. 

In general, the tg 5 of atrazine is known to be 60 days in soils, but in aquatic 

environments it has shown to be Ln a wide range from 0.33 days to more than 1 year 

depending on the site specific conditions, such as temperature, sunlight, and microorganism 

concentrations (Table 1). The to,s value of atrazine in surface water is relatively shorter than 

those measured in soils (tg s = 10-100 days) because the contribution of abiotic processes such 
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Figure 1. Atrazine and its degradation products 
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Table I. Atrazine half-life values documented in the previous studies. 

Reference Half-life 

(days) 

Environment 

Goldberg et al. (1991) 1.6- 13.3 Cedar River, lA 

Kolpin and Kalkhoff (1993) 1.5 - 7.0 Roberts Creek, lA 

Schottler and Eisenreich (1997) >365 Great Lakes 

Torrents et al. (1997) 0.33^ .. 7.2" Laboratory 

Portnoy (1989) 10- 100 Soil 

Paterson and Schnoor (1992) 16 Soil 

Kanwar et al. (1993) 53- 78 Soil 

Tomlin (1994) 35- 50 Soil 

105--200 Groundwater 

"Nitrate-mediated indirect photolysis 

"Direct photolysis 
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as photolysis and hydrolysis is stronger and more effective for atrazine degradation in surface 

water environment, while biotic processes such as biotransformations are dominant in soil 

environment. Atrazine can be transformed into numerous different degradation products by 

either biotic or abiotic processes in the nature. The biotic transformation products include 

desethylatrazine [4-Amino-2-chloro-6-isopropylamino-s-triazine] and deisopropylatrazine [2-

Amino-4-chloro-6-ethylamino-s-triazine] (Figure 1), while abiotic transformation products 

include hydroxyatrazine [2-Hydroxy-4-ethylaniino-6-isopropylamino-s-triazine] and cyanuric 

acid [ 2,4,6-Trihydroxy-s-triazine] which is the end product of atrazine by photolysis (Figure 

I). To water quality managers, the exposure level of atrazine is particularly interesting rather 

than other degradation products because it is known to have much higher chronic toxicity 

than its degradation products (Pugh 1994). 

Previous studies concluded that atrazine in surface waters is degraded primarily by 

photolysis. Goldberg et al. (1991) and Pelizzetti et al. (1990) found that atrazine in surface 

water samples is rapidly degraded by photolysis with the to j values in the range between 1.6 

days and 13.3 days from their laboratory studies. Kolpin and Kalkhoff (1993) investigated 

the major degradation processes of atrazine at Roberts Creek in northeastern Iowa. Atrazine 

concentrations decreased by about 25-60% as it traveled along the 11.2-km reach of the 

stream. They concluded from a limited field data that abiotic processes are the primary 

atrazine degradation pathways in the stream environment because the concentrations of the 

two biotic degradation products, desethylatrazine and deisopropylatrazine, were unchanging 

or decreasing downstream. They also demonstrated a significant inverse relationship between 

the number of simlight hours and the tg j of atrazine. A seasonally varied atrazine tg j was 

obtained with the minimum of 1.5 days and maximum of 7.1 days occurring during July and 

October, respectively. The mechanistic of direct and indirect (or sensitized) photolysis of 

atrazine in aqueous solutions was investigated more in depth by Torrents et al. (1997). Their 

laboratory study showed that atrazine degrades more rapidly in the presence of nitrate 

nitrogen (NO3-N) because nitrate generates hydroxyl radicals in water in the presence of 

sunlight. The hydroxyl radicals then cause to transform atrazine by dealkylation and alkyl 

oxidation (indirect photolysis). However, in the presence of dissolved organic carbon (DOC), 
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the direct photolysis may be more dominant because DOC efficiently scavenge hydroxyl 

radicals but does not compete with atrazine for sunlight (Torrents et al. 1997). In summary, 

the previous studies suggested with one consent that simlight is an important driving force to 

degrade atrazine level by either direct or indirect photolysis in surface water. 

The objectives of this study are to estimate time-variable kinetic transformation rates of 

atrazine using a mass balance model in the Saylorville Reservoir, Iowa (Figure 2) and 

investigate environmental factors that influencing the effectiveness of biotic and abiotic 

degradation processes of atrazine at the study site. The mass balance model was constructed 

using the field data collected earlier by Baumarm et al. (1979) and Leung (1979) based on the 

assumptions of a well-mixed reservoir condition. Boundary input conditions were prepared 

on a monthly basis because only limited field data are available. The time-variable atrazine 

kinetic transformation rates were estimated by solving the mass balance model in conjunction 

with an optimal parameter estimation tool. The relations of the half-life values to the 

environmental parameters such as number of sunlight hours, water temperature, and nitrate 

concentration were examined to determine the significance of these parameters on the 

effectiveness of biotic and abiotic degradation processes in the reservoir. A case study was 

attempted to project monthly contamination levels of atrazine in response to increased 

atrazine uses in the watershed by applying the model and estimated half-life values to the 

reservoir. 

Description of Study Site 

The Saybroville Reservoir was impounded in April, 1977 and is located on the upper 

Des Moines River basin, Iowa (Figure 2). The reservoir was built primarily for the purposes 

of flood control, low flow augmentation for water quality control, and recreational activities 

(US Army Corps of Engineers 1983). At fiill flood control pool, elevation 271.3 m, the 

reservoir extends 86.9 km above Saylroville dam and occupies about 67.6 kml At 

conservation pool, the reservoir water surface elevation is about 254.8 m and occupies 24.1 

km^. The mean and maximum depths of the reservoir are 4.3 m and 13.8 m, respectively at 

the conservation level. The reservoir water surface elevations were fluctuated between 253.8 
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m (capacity 88.4 million m^) and 255.1 m (capacity 118.5 million m^) during the study 

period, from January, 1978 through December, 1978. Approximately 79% of the upstream 

watershed was cropland, 6% was permanent pasture, 5% was forest, and 7% was urban at the 

time of study period (Iowa Department of Environmental Quality 1976). Com and soybeans 

are two major crops in the area. The annual precipitation during the study period was 797 

mm which is slightly less than ±e normal annual precipitation of 813 mm in Iowa. 

The observed data used in this study were collected weekly or biweekly at three 

sampling stations, denoted as Stations 1, 4, and 5 (Leung 1979). These stations are part of 

total 8 sampling stations installed in the Des Moines River by the Engineering Research 

Institute of Iowa State University to monitor the long-term impacts of Saylorville and Red 

Rock reservoirs on water quality and quantity (Baumann et al 1979; Lutz and Cavender 

1997). Table 2 describes the location and drainage area for each sampling station. Samples 

were collected from three depths (subsurface, mid-depth, and bottom) of the reservoir at 

Station 4. Although the historical water quality monitoring data showed a distinct thermal 

and chemical stratifications during the sununer months in the reservoir (Lutz and Cavender 

1997), very weak stratifications were occurred during the study period, which allowed the use 

of well-mixed reservoir condition assumption. Atrazine levels in the reservoir water ranged 

from 0 to 1,356 ng/1 during the sampling period, from September, 1977 through November, 

1978, with an overall mean of 223 ng/1. Peak concentrations were observed in the late spring 

and early summer resulting from several short-term storm events following the application of 

atrazine tn the agricultural fields of the study area. 

Table 2. Description of sampling stations. 

Station Distance from Dam Drainage area 
(km) (km-) 

1 71.8 upsfream 14,539 

4 0.3 upstream 15,081 

5 3.0 downstream 15,128 
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Method 

Governuig Equation 

The reservoir waterbody from inflow boundary (Station I) to the Sayiorville Dam was 

assumed to be a completely-mixed system (Figxires 2 and 3). Longitudinal non-homogeneity 

and stratification in vertical directions of the reservoir was assumed negligible. The 

governing equation for the conservation of atrazine mass was constructed by identifying mass 

loss and gain components. A similar approach to the input-output model for a well-mixed 

reactor has been used by Schottler and Eisenreich (1997) for the Great Lakes. Mass inputs 

into the system include the upstream loading from above watershed (M,n), direct loading 

through runoff and drainage flows (MJ, and atmospheric loading (MJ by wet (Mp^, dry 

(Mj^) and gaseous deposition (Mvoi)- Mass outputs out of the system include atrazine mass 

losses via reservoir outflow (MQUJ, kinetic transformations by photolysis, hydrolysis, and 

biotransformation (MJ, and adsorption/settlement (MJ. By taking all components into 

account, the governing equation is expressed as following: 

dM 
c., +  / ( „ s , ( O / )  +  P . + C„A,/v, 

where subscript i denotes any month of the year; Mf is total mass in the reservoir water 

column in month i (kg); Qi„ is the upstream inflow (m^/s); C,>j is the atrazine concentration in 

the inflow (jig/l); Ap is the annual atrazine application rate in the watershed (kg/kmVyr.); Ad 

is the drainage area (km*); is fraction of annual load via runoff and seepage flows occurring 

in month is fraction of com and soybean cropping area to the total drainage area;^ is 

fraction of com cropping area to com and soybean cropping area; is fraction of atrazine 

applied area to com cropping area;^^ is fraction of atrazine which is delivered into the river to 

the A^-, Pi is fraction of annual load via precipitation occurring in month i; W is the annual 

deposition rate via precipitation (|ag /m^/yr.); is the surface area of reservoir (km"); is 

the atrazine concentration in the air (ng/m^);/is the fraction of air concentration sorbed on 
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Mil : Mass input through surface runoff, seepage flow, and drainage flow; 
Ms : Mass output by adsorption and settlement; 
Mk : Mass output due to biotic and abiotic degradation processes; and 
Mout : Mass output via reservoir outflow. 

Figure 3. Schematic description of the mass balance model for atrazine in the Saylorville Reservoir, Iowa. 
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particles; is the dry deposition velocity (cm/s); ki is the overall volatilization transfer rate 

(m/day); C^is the atrazine concentration in the reservoir water column (|ig/l); H is the 

Henry's law constant (atm-mVmol); Qout is the outflow (m^/s); Com is the atrazine 

concentration tn the outflow (jag/l); is the sedimentation rate constant (/month); Q is the 

sorbed concentration on particles (jag /kg); Css is the suspended solids concentration in the 

reservoir (mg/1); Vj is the total volume of reservoir in month i (m^); and is the kinetic 

transformation rate including photolysis, hydrolysis, and biotransformation in month i 

(/month). 

Solution Method 

The governing equation was solved iteratively to minimize sum of the root mean square 

errors (RMSE) between observed and simulated atrazine concentrations using the optimal 

parameter estimation tool, SOLVER, in the Microsoft Excel program. The objective function 

and constraints used to solve the governing equation are: 

where n is the number of month; and are simulated and observed monthly mean 

atrazine concentrations in the reservoir in month i, respectively. was obtained dividing 

the total mass of atrazine present in the reservoir during any month by the volume of 

reservoir water. The A; values were iteratively changed until the simulated atrazine 

concentrations fit measured values with minimum RMSE. The initial mass of atrazine 

presented in the waterbody (M^ = 3.7 kg) was obtained multiplying the atrazine concentration 

in the water column (C = 40.7 ng/1) and the volume of reservoir (V = 90.9x 10^ m^) measured 

on December 27, 1977 in the reservoir. The atrazine mass in the waterbody for next time was 

repeatedly computed by solving the equation (1) using a forward difference method until the 

objective fiinction and constraints were satisfied. 

Objective function: 

Constraints: ki > l.OxE-6, I = l,2,3,...,n 

Cs.™,. ^ 0.0 (2) 
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Input Data and Parameters Estimation 

Model inputs were provided on a monthly basis. Most of input data were obtained from 

field monitoring. Some input data and model parameters were estimated from physico-

chemical properties of atrazine, hydrologic characteristics of the watershed, and literature 

survey for this site. The major parameters and monthly input data used in this study are 

presented in Tables 3 and 4, respectively. The atrazine concentrations measured at Station I 

were used to estimate the mass loading (M,J from the whole watershed above that point. The 

flow data at Station I were estimated from the data collected at the US Geological Survey 

(USGS) gauging station near Stratford, which is located about 28 km upstream from Station 

1 (USGS 1978). The flows gauged at Stratford station were multiplied by the ratio of 

drainage area between the two points. The flows and atrazine concentrations measured at 

Station 5 were used to estimate mass output via reservoir water discharge (Mo„t). 

Annual total amount of direct mass input through runoff and drainage flows was 

calculated based on the amount of atrazine applied in the watershed and the percentage of 

total atrazine that is delivered to the waterbody. Typically 1.6-3.4 kg/ha of atrazine is applied 

to com cropland in Iowa (Paterson and Schnoor 1992; Rice 1996). A value oiA=1.1 kg/ha, 

which is slightly greater than the mean value, was chosen because the historical data showed 

that total atrazine use in the United States was peak (48 million kg) around 1979-1980 

(Schottler and Eisenreich 1997). The j/ value was used as a weighting factor for representing 

an intensive atrazine loading patterns during late spring and summer at the study site. It was 

estimated using the flow and concentration data collected at Station 1 (Table 3) because the 

trend of instream water quality is directly associated with the pattem of NPS loading in this 

area. The for any month was obtained dividing the amount of mass loaded in that month by 

the annual total load at Station 1, which represents atrazine loading pattem of the entire 

watershed. The fraction values, f, = 0.71, fj = 0.61, and fs = 0.55 were obtained from the 

survey data for this site (Naylor 1975; Leung 1979). The percentage of applied atrazine 

which is delivered into surface waters (/J) may vary depending upon tillage practices, the 

amount, intensity, and timing of rainfall after application of atrazine in the agricultural land. 

Previous studies have reported that approximately 0.5-5% of the atrazine applied to the Iowa 
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Table 3. Input parameters used for estimating time-variable kinetic transformation rate of 
atrazine in the Saylorville Reservoir. 

Parameter Unit Value Reference 

kg(ha)-'(yr)-' 2.7 Paterson and Schnoor (1992) 

Rice (1996) 

Schottler and Eisenreich (1997) 

f. 0.71 Naylor (1975), Leung (1979) 

f. 0.61 Naylor (1975), Leung (1979) 

f3 0.55 Naylor (1975), Leung (1979) 

f. % 0.5-2.0 Harmon and Duncan (1978) 

Johnson and Baker (1982) 

Wilson (1987), Rice (1996) 

w 75 Goolsby et al. (1993) 

Vd cm(sec)'' 0.2 Schottler and Eisenreich (1997) 

k, m(month)'' 1.69x10-^ Estimated using two-film theory 

foe 0.02 Estimated using measured data 

k. (month)"' 1.0 Estimated 
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Table 4. Monthly input data used for mass balance model at the study site. 

Month Qia Qout c.„ c ^out c. c. V •Si Pi 

mVsec mVsec Hg/m^ |ig/m^ ng/m^ g/m^ xlO'm^ 

1 8.88 10.95 29.0 29.3 0.0 6.0 89.9 0.002 0.014 

2 5.58 5.90 20.5 11.5 0.0 24.0 89.3 0.001 0.024 

3 51.79 52.69 25.0 15.0 0.0 144.0 89.1 0.011 0.151 

4 75.15 95.41 46.5 56.8 0.5 796.0 94.3 0.028 0.140 

5 53.15 60.81 638.2 299.0 0.6 93.0 91.5 0.282 0.170 

6 77.87 78.59 490.5 687.0 1.0 196.0 94.4 0.307 0.171 

7 111.70 120.88 285.7 363.0 0.1 256.0 98.0 0.266 0.203 

8 26.56 30.86 189.3 188.8 0.0 173.0 92.4 0.042 0.030 

9 57.59 64.76 115.3 149.8 0.0 283.0 99.4 0.053 0.038 

10 20.96 24.61 27.0 86.7 0.0 555.0 104.5 0.005 0.000 

11 11.35 17.18 23.0 49.5 0.0 27.0 102.4 0.002 0.053 

12 7.33 18.74 23.0 49.5 0.0 11.0 95.5 0.001 0.006 

Qi„ = Upstream inflow. 

= Outflow. 

Cjn = Atrazine concentration in the inflow. 

Cout ~ Atrazine concentration in the outflow. 

Cj = Atrazine concentration in the air. 

Cj, = Suspended solids concentration in the water column. 

V = Volume of the reservoir storage in month i. 

= Fraction of direct annual load occurring in month i. 

/7i = Fraction of annual precipitation load occurring in month i. 
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farm fields can be delivered into surface waters by runoff and drainage flows (Harmon and 

Duncan 1978; Wilson 1987; Rice 1996). Johnson and Baker (1982) suggested that average 

annual herbicides losses from Iowa agricultural fields to streams are 0.2% for the least 

persistent herbicide to 1.6% for the most persistent one. As no field monitoring data are 

available at the study site, a deterministic estimation of^^i value is difficult. Thus three 

different,/^ values, i.e., 0.5%, 1.0%, and 2.0%, were used based upon the previous studies for 

the estimation of atrazine half-life-

The annual atmospheric atrazine mass inputs into the reservoir were estimated to 

complete the mass budget although the amounts are small at the study site. Atrazine loading 

via precipitation was allowed to vary by monthly using the weighting factor p^. The /?; values 

for each month (Table 4) were estimated using the data collected at Walnut Creek watershed, 

which is located nearby the study site (Hatfield et al. 1996). Goolsby et al. (1993) estimated 

that the annual atrazine precipitation loading is 50-100 |ig/m^ in this site from field 

monitoring data. An average value of 75 |ig/m" was used for the annual atrazine precipitation 

loading (W). Atrazine dry deposition is proportional to the dry deposition velocity and 

particulate atrazine concentration in the air. The deposition velocity of 0.2 cm/s and/ = 0.85, 

which were used in the Great Lakes study by Schottler and Eisenreich (1997), were used in 

the model. The monthly atrazine air concentrations that measured in other similar 

Midwestern agricultxaral watersheds were used for this smdy (Schottler and Eisenreich 1997). 

This is a rough estimation, but it was assumed not to affect model results significantly 

because the atmospheric mass exchanges of atrazine are very small for the study site. The 

overall atrazine volatilization transfer rate (^,) was calculated using a modified two-film 

model (Thomann and Mueller 1987). Using the properties of atrazine shown in Table 5 and 

the flow conditions at the study site, k\ = 1.69x10'^ m/month was obtained. 

Mass sinLk by adsorption and sedimentation was estimated using physical property of 

atrazine (Octanol-water partition coefficient, log (Ko„) = 2.5), reservoir sediment property 

(organic carbon fraction, f^^ = 0.02), and a net sedimentation rate constant = 1.0 /month). 

The value was estimated by assuming that all sorbed atrazine in any month settles down to 
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Table 5. Physical and chemical properties of atrazine. 

Properties Unit Values 

Molecular weight g(mol)"' 215.7 

Solubility (at 20 °C in water) nng(l)33 

Vapor pressure at 20 "C atm. 4x 10"'° 

Henry's constant atm-m^(mol)3x10"' 

LogK„«at25°C - 2.5 

Specific gravity at 20 °C g(cm)"^ 1.187 

the bottom of the reservoir within that month. The amount of atrazine mass that lost from the 

water column by adsorption to suspended solids was estimated with a linear partitioning 

relationship: 

C =0.617/ K C 
X OC l iw W / 

The mass sinks by kinetic transformations were subjected to include the amount of 

atrazine mass that degraded by photolysis, hydrolysis, and biotransformation, but it may 

include any other processes such as plant and fish uptakes if they are considerable. The 

kinetic transformation processes can be expressed as either pseudo-first-order reactions or 

second-order-reactions. The reaction rates of these processes for atrazine in a surface water 

system depend both on the physico-chemical properties of atrazine and the properties of the 

aquatic environments (i.e., water depth, temperature, pH, intensity and spectrum of solar 

radiation, wind speed, and microbial concentration). In this study, a bulk first-order reaction 

rate that collectively includes biotic and abiotic degradation processes was used to determine 

the mass output by transformation processes because it is extremely difficult to determine 
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each kinetic transformation rate using the limited data. The monthly bulk transformation rates 

were treated as unknown values and determined by the optimal parameter estimation process 

explained previously. 

Half-life of Atrazine 

The optimal solutions for the monthly atrazine kinetic transformation rates {k) were 

found after 35 iterations with a small error, i.e., RMSE = 3.8. The half-life (toj) value, the 

time required for the transformation of one-half of atrazine to its degradation products, was 

obtained from the calculated k values with the assumption of first-order kinetics: 

Using the solution of (4), C=C„e'*' where Co is initial concentration, the first-order kinetic 

transformation rate k value can be converted into to 5 value using the following relationship. 

Table 6 shows the estimated atrazine half-life values for each month of the year. 

Observed mean daily hours of sunlight (TJ and monthly mean water temperature (T^^) at 

Station 1 for each month are also presented in the Table. The persistence of atrazine in the 

waterbody, as determined using the atrazine half-life value, varied seasonally. It was 

maximum during the winter months and minimum during the spring and summer months. 

The long persistence or half-life of atrazine during the winter months are mainly due to the 

extremely lower level of atrazine concentrations, less hours of sunlight, and lower water 

temperature during these periods, which weaken the effectiveness of photolysis and 

biodegradation. The half-life varied from 2 to 58 days with respect to the monthly 

environmental conditions of the reservoir. The variations of half-life agreed well with those 

found at Roberts Creek, Iowa by Kolpin and Kalkhoff (1993) where the atrazine half-life 

Results and Discussion 

(4) 

/QS = ln2 / k (5) 
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Table 6. Estimated atrazine half-life values (days) for each month. 

Month T, (hrs) T. CC) Mean 

(days) 

Month T, (hrs) T. CC) 

0.005 0.01 0.02 

Mean 

(days) 

1 9.56 0.7 34.0 24.0 16.0 24.7 

2 10.61 0.4 30.0 22.0 14.0 22.0 

3 11.94 2.4 7.0 4.0 2.0 4.4 

4 13.34 9.1 11.0 7.0 4.0 7.3 

5 14.53 14.0 6.0 3.0 2.0 3.7 

6 15.14 20.5 11.0 7.0 4.0 7.3 

7 14.85 23.8 11.0 5.0 2.0 6.0 

8 13.81 24.2 10.0 7.0 5.0 7.3 

9 12.48 19.9 21.0 10.0 5.0 12.0 

10 11.09 11.6 40.0 35.0 24.0 33.0 

11 9.87 4.8 44.0 36.0 28.0 36.0 

12 9.22 1.2 58.0 47.0 35.0 46.7 

Tj = The number of daily hours of sunrise to sunset. 

T^ = Water temperature measured at sampling station 1. 
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varied from 1.5 to 7.1 days during the period of April-October. Relatively larger atrazine tg 5 

values were obtained in the Saylorville Reservoir due, in part, to the larger drainage area and 

deeper depth of flow. In general, atrazine degrades exponentially v^ath time in surface water, 

thus the small creek that received a high level of atrazine concentrations via the surface 

runoff from adjacent agricultural fields might have experienced more rapid degradation. 

However, relatively longer half-life may occur at the outlet of a watershed such as near a 

reservoir due to low concentrations and deep flow conditions that reduce the effectiveness of 

abiotic degradation processes. In addition, in a larger watershed, hydrologic conditions may 

be more non-homogeneous, including rainfall distribution, intensity, and tributaries, which 

can lead to a greater variations of tg j. 

It is shown that the atrazine t,, j values were sensitive to the vzdues. A greater/i value, 

indicating a greater amount of atrazine being delivered into the reservoir, resulted in shorter 

half-life to satisfy the conservation of mass equation. Therefore, a careful estimation of/j 

value for a watershed is required through field monitoring study. For the fate modeling of 

atrazine, the average of the estimated tg j values from three different values can be used 

for each month. 

Simulated monthly atrazine concentrations are compared with the field data measured 

at Station 4 in the reservoir to validate the estimated atrazine half-life (Figure 4). The 

observed data in the Figure are the mean of atrazine concentrations that measured at three 

different depths of the reservoir, surface, middle, and bottom. The simulated values represent 

the well-mixed atrazine concentrations in the reservoir that obtained when the optimal first-

order atrazine transformation rates were obtained. The simulated concentrations follow the 

trend of observed atrazine concentrations well, which validates the estimated time-variable 

transformation rates of atrazine in the reservoir. Some discrepancies were obvious in mid-

May, the period of peak concentrations. The explanation is that the simple mass balance 

model was not intended to catch the peak atrazine concentrations resulting from short-

duration storm events following intensive applications of atrazine. 
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Figure 4. Comparison of model results with observed atrazine concentrations. 
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Atrazine Degradation Processes 

It is difficult to describe the degradation processes of atrazine in a surface waterbody 

without sufficient measurements of various degradation products along a reach of the 

waterbody. Water temperature and the number of daily hours of sunlight (TJ were used as 

indirect indicators for determining the significance of biotransformation and 

photodegradation processes in a previous field study (Kolpin and Kalkhoff 1993). The 

relationships between these environmental parameters and the half-life values may assist in 

examining the significance of biotic and abiotic degradation processes of atrazine in the 

reservoir. 

Figures 5a and 5b show the estimated atrazine half-life values and the observed daily 

hours of simlight and water temperature (Table 6), respectively. A significant inverse relation 

with the correlation coefficient r = (-0.83) ~ (-0.86) exists between the half-life and the daily 

hours of sunlight. A linear regression equation, Y = -6.OX + 90.2 where X and Y denote the 

number of daily hours of sunlight in any month and atrazine half-life during that month, was 

obtained firom all data points with r = -0.84. The equation suggests that the half-life of 

atrazine without sunlight in the waterbody may be about 90.2 days, in which atrazine is 

mainly degraded by biotic processes. The results support the findings in previous studies 

(Pelizzetti et al. 1990; Goldberg et al. 1991; Kolpin and Kalkhoff 1993; Torrents et al. 1997) 

that the amount of sunlight is an important factor for driving photodegradation processes of 

atrazine in surface water. Previous laboratory studies (Goldberg et al. 1991; Torrents et al. 

1997) showed that the degradation rate of atrazine increased with increasing nitrate nitrogen 

concentrations in surface water by indirect (i.e., nitrate mediated) photolysis. In this study, 

however, it was found that insignificant relationship (r < 0.1) exists between the half-life and 

the nitrate nitrogen concentrations. This may imply that the direct photolysis may be the 

major atra2dne photodegradation mechanism rather than indirect photolysis at the study site. 

The results are consistent with the findings of Torrents et al. (1997) that in the presence of 

dissolved organic carbon (DOC), the direct photolysis can be more dominant because DOC 

efficiently scavenge hydroxyl radicals but does not compete with atrazine for sunlight. 
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Figure 5. Relations of time-variable atrazine half-life to (a) the daily hours of sunlight and (b) 
water temperature. 
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A moderate inverse correlation with r = (-0.57) ~ (-0.60) was obtained for the half-life 

values and the water temperatures. This indicates that the effectiveness of biotic degradation 

process on the atrazine degradation tends to decrease as water temperature decreases. The 

result is consistent with the previous findings by Schottler and Eisenreich (1997). These 

relationships can be used to describe the importance of biotic and abiotic degradation 

processes depending upon the environmental conditions. An intensive field monitoring study, 

however, is required to measure the various degradation products of atrazine in order to 

describe and quantify the individual degradation process. 

Atrazine Mass Budget 

The annual mass budget of atrazine in the Saylorville Reservoir was analyzed to 

determine the relative importance of various source and sink terms in the waterbody. Figure 6 

shows the annual amount of various sources and sinks of atrazine into and out of the 

reservoir. The total amount of atrazine present in the reservoir water column slightly 

increased firom the initial mass of atrazine in the reservoir = 3.7 kg in December 1977 to 

the simulated closing mass Mf = 4.9 kg in December 1978. This implies that the reservoir 

regulates the loaded atrazine adequately on the annual basis. The small net accumulation of 

atrazine, at least in parts, attributed to the severe drought occurred in the previous year and 

the increasing trend of atrazine use at that time. The mean daily discharges for the Des-

Moines River at Stratford in water years 1977 and 1978 were 7.3 mVs and 43.1 mVs (USGS 

1977 and 1978), respectively, indicating the hydrologic situations of the study period. 

Therefore, the atrazine residue that remained in the watershed during the drought year may be 

flushed into the reservoir in the following year. 

Approximately 322 kg of atrazine entered the reservoir via the inflows, 305 kg via 

direct runoff and drainage flows, and 1.7 kg through atmospheric depositions during the 

study period. This indicates that major sources of atrazine enter the reservoir by way of the 

upstream inflows and distributed nonpoint source loading, which contribute more than 99% 

of total inputs. The atrazine loadings through precipitation, dry deposition, and gaseous 

exchange were found to be negligible at the study site. 
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Figure 6. Estimated annual atrazine mass budget in the Saylorville Reservoir, Iowa. 
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About 374.5 kg of atrazine was lost from the reservoir through downstream discharges, 

253 kg by the kinetic transformations such as photolysis, hydrolysis, and biotransformations, 

and 0.65 kg by adsorption and settlement. This means that approximately 60% and 40% of 

atrazine that loaded into the reservoir from the farm land were controlled by outflows and 

kinetic transformations, respectively. The amount of atrazine loss due to adsorption and 

settlement is insignificant (Thomann and Mueller 1987) as expressed by the following 

relationship and shown in Figure 7. 

f f i ,  2/„a:„c„ , (6) 

The fraction of dissolved form of atrazine is a fiinction of physical property of atrazine 

(Table 5), suspended solids concentrations (CjJ, and organic carbon fraction (/^) in the 

reservoir. The suspended solids concentrations varied from 5 to 1480 mg/1 during the study 

period. Under this condition, iff^ is less than 0.1, more than 97% of atrazine remains in the 

dissolved form in the water column of the reservoir. During the study period, the organic 

carbon concentrations were in the range of 3 to 27 mg/1 and^^ was less than 0.02 in the 

reservoir (Baumann et al 1979). 

Case Study 

The atrazine contamination levels in the upper Des Moines River and Saylorville 

Reservoir were found below the MCL for drinking water during the study period. However, 

they would exceed MCL if the amount of atrazine use in the upstream watershed increased. 

The amount of atrazine use in the agricultural fields depends on the cropping system, tillage 

practices, and land area of com cropping fields. For examples, the acreage of com cropping 

fields and continuous com rotations will possibly increase if the com production produces 

more revenue than soybean production in the future. An increasing trend of no tillage 

agriculture in the Midwestern United States is another potential factor for the increase of 

atrazine use because more herbicides are used under no tillage system to control weeds. 

Therefore, a case study was attempted using the mass balance model and the estimated 
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Figure 7. The fraction of dissolved atrazine to total concentrations as a function of sediments 
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atrazine half-life values to examine the change in the contamination levels of atrazine in the 

reservoir in response to a potential increase in atrazine uses. 

In Table 7 three different scenarios considered in this study are listed. Case 1 is the 

baseline conditions for which the agricultural management system and the amount of atrazine 

use were assumed corresponding to that in 1978. For Case 2, the fraction of com and soybean 

cropping area (/J) and the fraction of atrazine applied area in the watershed (f^) were assumed 

to increase by 14% and 5% from baseline, respectively. This is an 52% increase in atrazine 

use compare to the baseline. For Case 3, the fraction of com cropping area in the com and 

soybean cropping area and the fraction of atrazine applied area in the watershed (^) were 

assumed to increase by 4% and 5% from Case 2. This is equivalent to 86% increase in 

atrazine use compare to the baseline. These scenarios represent the hypothetical situations in 

which the increase in uses of atrazine is a results of increases in crop land area, com cropping 

area percentage, and atrazine applied area in the watershed. 

Table 7. Scenarios for different atrazine uses in the upstream watershed of the Saylorville 
Reservoir, lA. 

Case (kg/ha) f /z /3 h 

1 2.70 0.71 0.61 0.55 0.01 

2 2.70 0.85 0.61 0.70 0.01 

J 2.70 0.85 0.65 0.80 0.01 

Figure 8 shows the reservoir water quality in response to the increased atrazine uses. 

The level of atrazine concentrations reached up to 2,600 ng/1 in the month of May under Case 

2, but dropped quickly to the level of less than 1,000 ng/1 in the following months. The 

atrazine contamination level, however, exceeded the MCL in the month of May under Case 

3, and it remained over the rest of the year with the high level of atrazine concentrations 

greater than 2,000 ng/1. This indicates that an 86% increase in atrazine uses in the upper Des 

Moines River watershed could alter the status of reservoir water quality. The reservoir loses 
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Figure 8. Saylorville reservoir water quality response to changes in atrazine use. 
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its regulation function to mitigate atrazine concentrations in the reservoir by equilibrating the 

mass inputs with the losses via outflow discharges and kinetic transformations after the 

month of May in Case 3. It is because the contaminant loading rate exceeds the self-

purification capacity (degradation rate) of the reservoir through biotic and abiotic degradation 

processes. Although Case 3 may not occur in the future at the study site, it is an important 

finding for the agricultural decision and policy makers because the long persistence of highly 

elevated atrazine concentrations in a reservoir is harmful for aquatic ecosystem and safe 

water supply. The results provide a potential worst scenario in the futiire and can be used as a 

rough guideline for the control of atrazine use in the Midwest Com Belt area. 

Conclusions 

A mass balance model for atrazine was constructed for the Saylorville Reservoir, Iowa 

and applied to estimate the time-variable transformation rate or half-life using field data 

collected earlier. The atrazine half-life varied monthly firom 2 to 58 days depending upon the 

environmental conditions such as water temperature and daily hours of sunlight. A significant 

inverse relation was obtained between the half-life and the daily hours of sunlight, showing 

the significance of photodegradation at the study site. The results of this study support the 

findings in previous studies that photodegradation is an effective process for degrading 

atrazine level and that sunlight is an important factor to degrade atraizne in surface water. 

The effect of nitrate concentration on the half-life of atrazine was insignificant possibly due 

to the high level of dissolved organic carbon in the waterbody. This suggests that the direct 

photolysis is a dominant atrazine degradation process rather than nitrate-mediated indirect 

photolysis at the study site. The estimated armual mass budget of atrazine showed that the 

major sources of atrazine come fi-om the upstream inflow loading and direct loading via 

ninoff and drainage flows. A great portion of atrazine transported into the reservoir 

waterbody firom the farm land was mairJy controlled by outflows and kinetic 

transformations. However, a case study showed that a hypothetical 86% increase in atrazine 

uses in the upper Des Moines River basin would alter the pattern of reservoir water quality 
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response because the loading rate was greater than the self-purification capacity of the 

reservoir. 

Additional field studies are needed to measure the levels of various degradation 

products to describe major degradation processes of atrazine. A well-mixed reservoir 

condition assumption used in this study may not be valid for a deep reservoir where 

stratification occurs because the fate of atrazine can be affected by various flow regimes that 

are associated seasonal reservoir stratification patterns. The rate of atrazine degradation can 

be reduced under an interflow regime during a strong summer stratification period as it is 

difficult for sunlight to reach the deep intruding depth. In this case, more comprehensive 

reservoir toxic model is required to predict the persistence of atrazine and capture the 

occurrence of peak concentrations with temporal and spatial distributions under various flow 

regimes, which requires the estimated transformation rate or half-life in this study. 
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Notation 

The following symbols are used in this paper: 

AD '• = drainage area (km*); 

Ap annual atrazine application rate in a watershed (kg/kmVyr.); 

A, = the surface area of reservoir (km*); 

Ca = mean concentration of atrazine in the air (ng/m^); 

Cin " = mean concentration in the inflow (jig/l); 

Cout = mean atrazine concentration in the outflow (fxg/I); 

Q the sorbed atrazine concentration on particles (|ig /kg); 

^obs,! " = observed atrazine concentration in a reservoir water in month i (ng/1); 

c ^simj simulated atrazine concentration in a reservoir water in month i (fig/1); 

^SS ' the mean suspended solids concentration in the reservoir (mg/1); 

Cw " = the observed mean atrazine water concentration (^g/1); 

/ = fraction of air concentration sorbed on particles; 

/ = fraction of com and soybean cropping area to the drainage area; 

/: = fraction of com cropping area to /; 

/3 = fraction of atrazine applied area to/; 

/4 = fraction of which is delivered to surface water; 

/oc = fraction of organic carbon; 

H = Henry's law constant (atm-mVmol); 

k the kinetic transformation rate of atrazine (/month); 

ki overall volatilization transfer rate (m/day); 

K. -= octanol-water partition coefficient; 
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K = the sedimentation rate constant (/month); 

M, = atmospheric atrazine mass loading (kg); 

MCL = = the maximum contamination level (ng/1); 

M, = direct atrazine mass loading via runoff and drainage flow (kg); 

= = atrazine mass loading by dry deposition (kg); 

Mi the total mass of atrazine in a reservoir water column in month i (kg); 

= upstream atrazine mass loading (kg); 

Mfc = atrazine mass output by kinetic transformations (kg); 

Mo„, = atrazine mass output via downstream discharge (kg); 
= atrazine mass loading via precipitation (kg); 

M, atrazine mass output by adsorption and settlement (kg); 

Mvo. = = atrazine gaseous mass transfer via air-water exchange (kg); 

a = the number of months; 

Pi = fraction of annual precipitation load occurring in month i; 

Qin upstream inflow (m^/s); 

Qout ~ outflow (mVs); 

r = correlation coefficient; 

•Ji fraction of direct annual load occurring in month i; 

^.5 half-life of atrazine (days); 

T. mean daily hours of sunlight (hours); 

V total volume of reservoir (m^); 

Vd dry deposition velocity (cm/s); and 

W annual atrazine deposition rate via precipitation (|ag /mVyr.). 
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CHAPTER 4. PREDICTION OF THE FATE AND TRANSPORT OF ATRAZINE 
WITH A 2D RESERVOIR TOXIC MODEL 

A paper to be submitted to the Journal of Environmental Engineering 

Se-Woong Chung and Ruochuan Gu 

Abstract 

A frequent detection of high level herbicide concentrations in the reservoirs of the 

Midwestern United States during late spring and summer is a great concern because of its 

adverse impacts on a safe water supply and aquatic ecosystem. Thus, the reservoir operators 

need timely information about the contamination levels, persistence, and temporal and spatial 

distributions of these chemicals in a reservoir for an adequate water quality management in 

the area. A two-dimensional reservoir toxic model was applied to the Saylorville Reservoir, 

Iowa for simulating the fate and transport processes of atrazine, the most commonly used 

herbicide for preemergent weed control in the com cropping area, in the reservoir. Simulated 

reservoir flow velocities, water temperatures, and atrazine concentrations were used to 

investigate the seasonal transport processes and persistence of atrazine. The model accurately 

simulated the temporal variations of observed atrazine concentrations and captured the peak 

concentrations occurred during late spring by using a time-variable kinetic transformation 

rate. Comparisons of model results with field data indicated that the use of site-specific 

temporal transformation rates of atrazine improves the model accuracy. The methodology 

employed in this study can be used to model commonly detected herbicides such as atrazine, 

alachlor, cyanazine, and metolachlor in other reservoirs located in agricultural areas. 

Introduction 

Atrazine [2-chloro-4-ethylamino-6-isopropylamino-l,3,5-triazine] is the most 

commonly used herbicide in the spring for preemergent weed control in the com cropping 

area in Iowa and the Midwestern United States. Although the intensive use of atrazine has 

dramatically improved com production efficiency in this area since its first use in 1959, the 
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public concerns about its potential adverse impacts on aquatic ecosystem and human health 

has also been grown because it has been detected with a significant level in surface water, 

ground water, drinking waters, and even in precipitation around a year (Thurman et al. 1991; 

Nations and Hallberg 1992; Goolsby and Battaglin 1993; Pereira and Hostettler 1993; 

Hallberg 1996; Hatfield et al. 1996). Approximately 3.4 million kg of atrazine is applied to 

the agricultural fields of Iowa annually (Goolsby et al. 1991; Paterson and Schnoor 1992; 

Kolpin and KalkhofF 1993) with a typical application rate of 1.6-3.4 kg/ha (Paterson and 

Schnoor 1992; Rice 1996). Because of its potential chronic harmfiil impact on human health, 

the United States Environmental Protection Agency (USEPA) ranked atrazine as a class C 

(possible) carcinogen and established the maximum contamination level (MCL) of 3.0 fj.g/1 

for drinking water (Richard et al 1995). 

In general, significant amount of atrazine is flushed into surface waters from 

agricultural lands during late spring and early summer by several storm events following 

application of atrazine in the agricultural fields. Approximately 0.5-5 percent of field-applied 

atrazine is delivered into rivers and reservoirs carried by surface runoff and subsurface 

drainage flows (Harmon and Duncan 1978; Johnson and Baker 1982; Wilson 1987; Rice 

1996). During the period of peak loading, atrazine is known to occur in streams and 

reservoirs at exposure levels ranging from 0.3 to 3 [ig/l with peak concentrations more than 

100 |j,g/l in surface runoff from agricultural fields adjacent to bodies of water during times of 

application (Thurman et al. 1991; Goolsby et al. 1993). This can substantially affect a 

downstream reservoir because the reservoir collects and stores the storm runoff that contains 

high concentrations of atrazine for a certain period (i.e., residence time). Goolsby et zl. 

(1993) reported that atrazine is the most frequently detected chemical with highest 

concentrations in 76 Midwestem reservoirs from their field monitoring study of herbicides. 

They indicated that a relatively long-term residence time of reservoir water containing high 

concentrations of atrazine is problematic not only for the reservoir water quality but also for 

downstream water quality because elevated concentrations can persist for much longer 

periods of time in the downstream due to the effect of reservoir storage. 
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A long-term exposure of elevated atrazine concentrations in raw^ waters is concerned 

not only due to environmental issues but also due to economic perspectives. Atrazine is not 

easily removed from drinking water by conventional water treatment processes, thus tap 

water concentrations are similar to raw water concentrations unless a high-level of treatment 

process such as carbon filtration is employed (Hallberg 1996). Therefore, a reservoir operator 

needs timely information about the occurrences, exposxire levels, and persistence of peak 

concentrations, and the temporal and spatial distributions of atrazine during the concerned 

period for an adequate water quality management. A mathematical model can be 

economically and efficiently used to provide timely answers for these questions. In particular, 

the mathematical model is a unique and valuable tool to assess the environmental impact of a 

different upstream watershed management strategy on the quality of reservoir water. 

Agricultural policy makers and decision makers can rely on the model to assess the 

environmental consequences of alternative policies. 

The transport and transformation processes of atrazine in a reservoir are complicated 

and highly influenced by seasonal reservoir circulation patterns as well as its physico-

chemical properties. Therefore, a mathematical model should be able to accurately simulate 

both the reservoir hydrodynamics and chemical reaction kinetics to capture the real 

distributions of atrazine in a reservoir. A laterally integrated two-dimensional (2D) 

hydrodynamics and transport model, CE-QUAL-W2 (Cole and Buchak 1994), has been 

widely used for the modeling of temperature and conventional constituents (i.e., dissolved 

oxygen and nutrient) in many reservoirs (Gordon 1980, Kim et. al 1983, Martin 1988, Bath 

and Timm 1994). However, use of the model for the fate and transport of toxic chemicals 

such as herbicides and insecticides has been limited because it is not capable of modeling 

toxic substances. Chung and Gu (1998) applied the model to simulate and analyze the 

transport of contaminated density currents in the Shasta Reservoir using the 1991 chemical 

spill data. The model accurately predicted the field measurements of water temperature and 

field observations of plume intruding depth and thickness. Although the study was only 

limited to the simulation of transport and mixing processes of a spilled toxic chemical in the 

reservoir, it laid a basis for the development of a toxic submodel. 
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The objective of this study is to investigate the fate and transport of atrazine in the 

Saylorville Reservoir, Iowa (Figxire I) by predicting the temporal and spatial (longitudinal 

and vertical) distributions of atrazine concentrations using a 2D reservoir toxic model. In 

particular, the model was applied to capture the occurrence and persistence of peak 

concentrations that observed during late spring and early summer. Four steps were taken: (1) 

incorporating a toxic modeling component into the 2D reservoir hydrodynamics and water 

quality model, (2) establishing various input data for the toxic model, (3) applying the model 

to simulate the unsteady longitudinal and vertical distributions of atrazine, and (4) analyzing 

the fate and transport of atrazine using the observed and simulated flow velocities, water 

temperatures, and concentrations. The site-specific and time-variable atrazine kinetic 

transformation rates (or half-life) used in this study are a fimction of environmental 

conditions, i.e., sunlight, temperature, and microorganisms (Chimg and Gu 1998). A 

sensitivity analysis was conducted to identify the potential model error associated with the 

use of the parameter (half-life). The model was validated against field data collected earlier 

including water temperatures and atrazine concentrations. 

Method 

Description of the Model 

The 2D reservoir toxic simulation model was designed to describe unsteady vertical and 

longitudinal distributions of toxic chemicals in water column and bed sediments in response 

to various boundary loads: upstream, tributary, distributed, and atmospheric (Chung and Gu 

1998). The model was developed using the finite-difference solution of a laterally integrated 

equations of hydrodynamics and mass transport (Cole and Buchak 1994); (1) horizontal 

momentum; (2) mass transport; (3) firee water surface elevation; (4) hydrostatic pressure; (5) 

continuity; and (6) an equation of state for density. The state variables include water svirface 

elevation, pressure, density, horizontal and vertical velocities, and chemical concentration. 

The independent variables are longitudinal distance, vertical flow depth, and time. The 

governing equations for the transport and fate of atrazine in a reservoir were obtained by 
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Figure 1. Map of the Saylorville Reservoir, vicinity area, and sampling Stations 
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considering mass conservation. The governing equations for total atrazine concentration in 

the water column (C, J and in bed sediments (C^J were expressed as: 

^ B C , , )  ^  ^  3(WBC,,) S X, 3 

Ba Ban B& B& & B& & 

= — I  i - U . c ,  J  -  K , L . . c , . ,  +  - { ( Q  /  f O - L . . c , . }  
y z • • 

~ f p.w^t.w ^ SPS ( ^ ) 

Ba y z 

where subscripts t, d and p denote the total, dissolved, and particulate phases of atrazine, 

respectively; subscripts a, w and b denote air, water, and bed, respectivelyandfp are the 

fractions of dissolved and particulate chemicals to the total chemical; t is time (sec); x is 

longitudinal Cartesian coordinate (positive to the right); B is waterbody width (m); U and W 

are longitudinal and vertical flow velocities (m/sec); D, and are longitudinal and vertical 

constituent dispersion coefficients (mVsec); Kf is diffusive exchange rate between water 

column and pore water of the bed (cm/sec); ^ is the porosity of the bed sediment; Kd is the 

svmi of first-order kinetic transformation rates for atrazine photolysis , hydrolysis, and 

biotransformation (/sec); His Henry's law constant (atm/mole/m^); Ca is vapor phase 

concentration (g/m^); O^ps is nonpoint source (NFS) mass flow rate per unit volume via 

runoff and drainage flows (g/mVsec); Vj is the net settiing velocity of sorbed chemical 

(m/sec); z is the depth of water from water surface (m); and y is the vertical distance from 

reservoir bottom (m). The chemical considered is expected to be in dissolved and particulate 

forms and vary in longitudinal and vertical directions of the water column and the bed 

sediments. 

The first term of right hand side (RHS) in (1) is the diffusive exchange of dissolved 

atrazine between sediment and water column. The second term is the degradation of 
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dissolved atrazine form due to photolysis, hydrolysis, and microbial decay. The model can 

compute the various degradation processes either separately by providing individual kinetic 

reaction rates or collectively by providing a lumped transformation rate or half-life value. A 

time-variable half-life value can be specified in the model input. The third term is the air-

water exchange of atrazine due to volatilization. The fourth term is the net settling of atrazine 

in the particulate phase. The model uses a net settling velocity as inputs for sediments, which 

does not explicitly account for particle type, grain size, density, viscosity, and turbulence. 

The last term is the external nonpoint source loading that can be estimated either by a simple 

mass balance model or a complicated NPS model. The second term of RHS in (2) is the 

degradation of dissolved form in bed sediment due to hydrolysis and microbial decay. 

The governing equations were solved using finite difference method to the laterally 

integrated hydrodynamics, mass transport, and transformation equations. The free water 

surface elevation and momentum equations were solved simultaneously based on an implicit 

finite-difference scheme, which allows the use of reasonable time scale for field application 

over entire stratification cycles (Martin 1988; Cole and Buchak 1994). The transport 

processes of atrazine and sediment were solved using an explicit numerical scheme, 

QUICKEST finite difference scheme, which was used for temperature simulation in CE-

QUAL-W2 model (Cole and Buchak 1994). Vertical turbulent transfer of atrazine and 

sediments was determined from the vertical shear of horizontal velocity and a density 

gradient dependent Richardson number flmction. The physical, chemical, and biological 

transfer and transformation processes of a toxic chemical were computed in the toxic 

submodel. The toxic submodel was created and linked into the hydrodynamics and transport 

model using the FORTRAN Powerstation (Chung and Gu 1998). The source and sink terms 

of atrazine (physical transfer and degradation processes) may be computed less frequently 

than hydrodynamics. The physical and chemical properties of a toxicant and kinetic reaction 

rates need to be provided through an independent input file. 

Kinetic Processes of Atrazine 

Atrazine can be transformed into numerous different degradation products by either 

biotic or abiotic transformation processes. Biotic transformation of atrazine is generally 
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accomplished by biotransformation and results in N-deaikylation of the atrazine structure to 

initially produce either desethylatrazine [4-Amino-2-chloro-6-isopropylamino-s-triazine] or 

deisopropylatrazine [2-Amino-4-chloro-6-ethyIamino-s-triazine]. Abiotic transformation 

processes such as photolysis and hydrolysis can transform atrazine into hydroxyatrazine [2-

Hydroxy-4-ethylamino-6-isopropylamino-s-triazine], and eventually into cyanuric acid [ 

2,4,6-Trihydroxy-s-triazine] that is the end product of atrazine by photolysis (Pugh 1994). 

The reaction rates of these transformation processes for atrazine in a natural water 

system depend both on the physico-chemical properties of atrazine and the conditions of the 

aquatic environment (i.e., water depth, temperature, pH, intensity and spectrum of solar 

radiation, wind speed, microorganism concentration, and suspended solids concentration). 

Individual degradation processes in the reservoir may be considered in the simulations and 

analysis of the fate of atrazine. But due to the limited measurement data (i.e., no degradation 

products were measured), a time-variable bulk first-order kinetic transformation rate (KJ that 

collectively includes photolysis, hydrolysis, and biotransformation processes was used to 

compute the degradation of atrazine in the waterbody (Table 1). The time-variable values 

Table 1. Time-variable kinetic transformation rate and half-life of atrazine. 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

0.03 0.03 0.16 O.IO 0.19 0.10 0.12 0.10 0.06 0.02 0.02 0.01 

^0.5 24.7 22.0 4.4 7.3 3.7 7.3 6.0 7.3 12.0 33.0 36.0 46.7 

for the Saylroville Reservoir were obtained in previous study using a mass balance model and 

field monitoring data (Chung and Gu 1998). The atrazine half-life values varied from 3.7 to 

12.0 days dviring the study period, form March to September, 1978, with minimum and 

maximum values in the months of May and September, respectively, depending upon the 

envirormiental conditions such as sunlight and water temperature. 

A partition coefficient (Kp) was used to separate the fractions of dissolved and 

particulate forms of atrazine to the total atrazine concentration based on the assumption of 
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linear sorption and desorption kinetics (Thomann and Mueller 1987). The dissolved and 

particulate concentrations were expressed as 

~ fd. w^i. w  

C,.. = (4) 

1 
where fp„ = , fd.., = ^ „ •, r is the concentration of atrazine expressed on 

1 "f~ ^ SS P ss 

a dry weight solids basis (mg/kg), and €„ is the suspended solids concentration (kg/m^). 

Thus, the distribution of atrazine concentrations between particulate and dissolved phases 

was determined dependent upon the partition coefficient and the solids concentrations. 

A two-film theory (Whitman 1923; Mackay 1985) was used to compute the gaseous 

transfer of atrazine fi-om air to water and water to air. The exchange rate was computed as a 

function of the atrazine concentration gradient between the reservoir water column and the 

overlying atmosphere and the conductivity across the interface of the two fluids. The 

conductivity was influenced by both physico-chemical properties of atrazine and 

environmental conditions at the air-water interface. The overall volatilization transfer 

coefficient, k^, was given as: 

-L= _L 1 
k , ~  K , ' '  K ^ H  (5) 

where Ki is the liquid film coefficient and Kg is the gas film coefficient. The value was 

computed as a function of the chemical characteristics (H, AT/ and Kg), water velocity, and 

wind speed in the model. Since the transfer coefficient for the open bodies of water such as 

reservoir and lake is largely affected by wind, the equation suggested by Mackay (1985) was 

used to estimate the liquid and gas film transfer coefficients. 
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Model Application 

Study Site 

The Saylroville Reservoir is located on the upper Des Moines River basin, Iowa (Figure 

1). The reservoir was built primarily for the purposes of flood control, low flow augmentation 

for water quality control, and recreational activities (US Army Corps of Engineers 1983). At 

full flood control pool, elevation 271.3 m, the reservoir extends 86.9 km above dam and 

occupies about 67.6 km^. At conservation pool, the reservoir water surface elevation is about 

254.8 m and occupies 24.1 km*. The mean and maximum depths of the reservoir are 4.3 m 

and 13.8 m at the conservation level, respectively. Approximately 79% of the upstream 

watershed was cropland, 6% was permanent pasture, 5% was forest, and 7% was urban at the 

time of study period (Iowa Department of Environmental Quality 1976). Com and soybeans 

are two main crops in the area. The amount of annual precipitation during the study period 

was 797 mm which is slightly less than the normal annual precipitation of 813 mm in Iowa. 

The field monitoring data used in this study were collected weekly or biweekly at two 

sampling stations, denoted as Stations 1 and 4. These stations are part of 8 sampling stations 

installed in the Des Moines River basin by the Engineering Research Institute of Iowa State 

University to monitor the long-term impacts of Saylorville and Red Rock reservoirs on water 

quality and quantity (Baumann et al 1979; Lutz and Cavender 1997). Station 1 is located near 

the Boon water plant about 71.8 km upstream from Saylorville Dam and considered as the 

upstream boundary of the reservoir at conservation pool. Station 4 is located within the 

reservoir with an upstream drainage area of 15,081 km*. Samples were collected from three 

depths (subsurface, mid-depth, and bottom) at Station 4 in the reservoir. Although the 

historical water quality monitoring data showed a distinct thermal and chemical 

stratifications during the sxammer months in this site (Lutz and Cavender 1997), a weak 

stratification was observed during the study period. The mean daily inflow at Station 1 and 

outflow from the dam were 42.5 mVsec and 48.6 mVsec and water surface elevation was 

fluctuated between 253.8 m (capacity 88.4 million m^) and 255.1 m (capacity 118.5 million 

m^) during the study period, form March to September, 1978. The mean water residence time 
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(volume/outflow) in the reservoir was 17.7 days with minimum 9.4 days during July and with 

maximum 34.7 days during August. 

Simulation Domain and Initial Conditions 

The reservoir reach from sampling Station 1 to Saylorville Dam was discretized into a 

single branch finite-difference grid consisting of 31 longitudinal segments with average 2.3 

km in length and 28 vertical layers with 0.8 - l.O m in thicicness (Figure 2). The inflow from 

the Big Creek lake, which was built mainly for flood control and is located at about 12 km 

upstream from the Saylorville Dam, was treated as a tributary. The reservoir bathymetry data, 

i.e., elevation and width of the reservoir cross-section for each segment, were obtained from 

the United States Geological Survey (USGS) 7.5 minute topographic maps (1:24,000 scale) 

for this site. The accuracy of bathymetry data was evaluated by comparing the volume-

elevation curve generated by the model with the project volume-elevation curve for the 

reservoir (US Army Corps of Engineers 1983) (Figure 3). 

The time frame of model application was from March 1 to September 30, 1978 because 

the period is corresponding to com growing season and the months when a significant level 

of atrazine is detected. A variable timestep was computed in the model to maintain numerical 

stability using an autostepping algorithm that was embedded in the model. The average time 

step was 1088 seconds over the simulation period. The initial conditions for water 

temperature and atrazine concentration in the reservoir were set at 2 °C and 0.01 |ig/l for all 

cells, respectively, based on the field measurement data for February 28, 1978. The ice cover 

simulation option of CE-QUAL-W2 model (Cole and Buchak 1994) was used when the 

reservoir is covered by ice in the month of March. 

Input Data and Boundary Conditions 

Most of input data were obtained from field monitoring. Some parameters were 

estimated from physico-chemical properties of atrazine, hydrologic characteristics of the 

watershed, and literature survey for this site. The daily values of precipitation, inflow, 

outflow, and reservoir water storage during the study period are presented in Figure 4. The 

atrazine concentrations and water temperatures measured weekly or biweekly at sampling 

Station 1 were used as the time-variable upstream boundary conditions. The flow data for this 
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Figure 2. The finite difference grid system of the Saylorville Reservoir: (a) plan view 



www.manaraa.com

102 

5 6 7 8 3 10 11 12 13 14 15 16 17 18 13 20 21 22 23 24 25 26 27 28 29 30 31 32 

(b) Longitudinal view 

32 

(c) Cross sectional view for segment 32 

Figure 2. (continued) (b) vertical view, and (c) cross sectional view. 
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Figxire 3. Comparison of elevation-capacity curve obtained from model bathymetry data with 
project elevation-capacity curve of the Saylorville Reservoir. 



www.manaraa.com

104 

350 

Inflow 

Outflow 
I 250 

1 1(1,J III I I 
3/1 3/31 4/30 5/30 6/29 7/29 8/28 9/27 

Date 

Figure 4. Daily precipitation, inflow, outflow, and storage of the Saylorville Reservoir durin 
the study period. 
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station were estimated from the daily flow data collected at the USGS gauging station near 

Stratford, which is located about 28 km upstream of Station 1 (USGS 1978) multiplying by 

the ratio of drainage area of Station 1 to that of Stratford station. The time-dependent 

boundary input data were interpolated for each timestep in the model. 

Meteorological data were obtained from the Des Moines, Iowa National Oceanic and 

Atmospheric Administration station, located just downstream of the reservoir. Since 

nighttime convective mixing is an important physical process affecting reservoir 

hydrodynamics, daily maximum and minimum temperatures rather than daily average air 

temperatures were used for the boundary conditions at the water surface. Surface wind speeds 

were slightly reduced (about 5%) using a sheltering coefficient of 0.95 based on a flat 

surrounding topography of the reservoir. The daily meteorological data were interpolated for 

each timestep to compute solar radiation, equilibrium temperatures, and coefficients of heat 

exchange for use in computing surface heat exchange. 

The model requires distributed flows and atrazine concentrations for each time step to 

compute the nonpoint source mass flow rate (ONPS)- About ten small creeks collect the 

distributed atrazine loads from the watersheds via overland flow, surface runoff, and 

subsurface drainage flows and discharge into the reservoir. In this study, the nonpoint source 

mass flow rate (0,^.3) collectively included the contributions of these tributaries and the 

distributed atrazine loading along the main branch of the reservoir. Unfortunately, no state-

of-the-art watershed-scale models are validated for simulating the fate and transport 

processes of toxic chemicals in the distributed flows (Donigian and Huber 1991; Wurbs 

1995). These models also require enormous input data including soil, weather, agricultural 

management (planting, chemical application, tillage, and harvesting), and the chemical 

transformation rate in field, surface and subsurface flows, which are difficult to obtain in the 

watershed, to simulate the time-variable atrazine loading into the reservoir. Thus the NPS 

atrazine loading rate was estimated based on the amount of atrazine that applied within the 

watershed, the percentage of total atrazine that is delivered to the waterbody, and a weighting 

factor that represents the dynamic loading pattern of atrazine at the study site. The detailed 

estimation process of NPS loading is presented in the previous paper (Chung and Gu 1998). 



www.manaraa.com

106 

Approximately 2.7 kg/ha of atrazine was assumed to have been applied in the com cropping 

area of surrounding watershed. The fraction values for f, = 0.71, fj = 0.61, and fj = 0.55 were 

used based on the previous survey data for this site (Naylor 1975; Leung 1979), where/J is 

the fraction of com and soybean cropping area to the drainage area (542 km-),^ is the 

fraction of com cropping area to the/ is the fraction of atrazine applied area to the^,- The 

percentage of applied atrazine which is delivered to surface waters (^) was assumed as 0.5% 

based on the previous studies for the region (Harmon and Duncan 1978; Johnson and Baker 

1982; Wilson 1987; Rice 1996). 

Figure 5 shows the estimated monthly distributed flow (QJ, nonpoint source mass 

loading (MJ and concentration of atrazine (CJ during the year of 1978. The monthly amount 

of direct mass input through distributed flows (MJ was calculated based on the application 

rate of atrazine, the fraction values (f„ fj, and fj), the percentage of total atrazine that is 

delivered to the waterbody (f4), and a monthly weighting factor (sj that represents the loading 

pattem of the study site (Chung and Gu 1998). The atrazine concentrations in the distributed 

runoff flows were computed dividing the mass (MJ by the flows (Q J that were calculated 

from the daily flow data measured at the USGS gauging station near Stratford, assuming a 

linear relationship between the flow and drainage area. The and Cj values were 

interpolated in the model for each time step. 

The model requires the specification of several model coefficients for hydrodynamics 

and mass transport. The model coefficients used for this study are listed in Table 2. The 

longitudinal eddy viscosity and diffusivity were estimated as a function of flow 

characteristics (i.e., discharge, depth, and roughness) using the equation suggested by Liu 

(1977). Vertical diffusion coefficients for momentum and constituents that varied in space 

and time were computed using the time-variable vertical shear of horizontal velocity and a 

density gradient dependent local Richardson number fimction. The Chezy coefficient is used 

in calculating the effects of bottom roughness. The default value provided by the model for 

most reservoir applications was used in this study because it is not a sensitive parameter to 

model results. The firaction of solar radiation absorbed in surface layer, p, and light extinction 

coefficient for pure water, 8, were estimated from the secchi depth observed at the study site 
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Figure 5. Estimated monthly-distributed flow (QJ, atrazine mass loading (MJ, and 
concentration (CJ in 1978 for the Saylorville Reservoir. 
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Table 2. Hydrodynamics and transport model coefficients used in the model. 

Coefficient Unit Value 

Longitudinal eddy viscosity, A, mVsec 225.0 

Longimdinal eddy difElisivity, mVsec 225.0 

Chezy coefficient m"^/sec 70.0 

Wind sheltering coefficient - 0.95 

Solar radiation absorbed in surface layer, p - 0.64 

Extinction coefficient for pure water, e /m 1.11 

(Cole and Buchak 1994). The secchi depth varied from 0.22 - 1.9 m in the reservoir over the 

historical sampling period, thus an average value of 1.0 m was used for the estimation of 

these parameters. 

Results and Discussion 

Hydrodynamics and Thermal Structure 

An accurate simulation of water balance, hydrodynamics, and thermal structure over 

time is important to the prediction of fate and transport of atrazine in a reservoir. In general, 

reservoir water level varies with time in response to various boundary flow conditions 

including inflow, surface runoff, seepage flow, precipitation, outflow, and evaporation. 

Therefore, the simulated water elevations were compared with the observed values to 

examine and validate the accuracy of water balance computation of the model in Figure 6. 

The model results follow the observed water surface variations reasonably well during the 

entire study period. The estimated distributed flows (QJ resulted in a slight error, e.g., the 

simulated values showed a smooth increase and decrease of water levels in the month of 

April, while observed values showed a sharp increase during the same period due to short-

term runoff events by snow melt and storms, but the accuracy of computed water balance is 
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Figiire 6. Observed and simulated reservoir water surface elevations. 
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satisfactory to simulate the fate and transport of atrazine. The water balance simulation can 

be further improved if a field- or watershed- scale model is applied to compute and provide 

runoff values from individual storm events. 

Figure 7 shows the computed flow velocity vectors for various dates. The velocity 

fields represent typical seasonal circulation patterns in the reservoir during early spring, late 

spring, summer, and fall, respectively. It should be noted that only part of the reservoir (about 

30 km upstream from the dam) is plotted due to the large spatial variations in flow velocities 

between upstream and downstream. The direction and magnitude of the vectors represent the 

resultant of vector product between the longitudinal and vertical velocities. The vector plots 

should be interpreted carefully because the length of one segment is too long, approximately 

2.5 km, to capture the details of velocity fields, i.e., one velocity vector represents the flow 

characteristic of a 2.5 km x 1.0 m cell of the reservoir. They were used only to examine the 

characteristics of seasonal water circulation patterns in the reservoir. 

Two different circulation patterns are detected for the four different periods. Similar 

circulation patterns were obtained for early spring and fall, although the driving forces are 

different. During the early spring, inflows entered the reservoir as a plug flow about 20 km 

upstream from the dam and moved toward the dam as forming an overflow in the reservoir 

because of the temperature difference between the upstream river waters (T^^ = 1 °C) and the 

reservoir water (T^ = 2-3 °C). The density of river water was slightly less than that of ambient 

reservoir water during the period (Figtire 8). The flows moved downward near the dam face 

and formed a reversal flow at the bottom of reservoir, but the reversal flow was captured 

^ain at about 15 km upstream from the dam by the inertia force driven by inflow and formed 

an upward movement. During the fall, however, the river water was slightly colder (Figure 8) 

than the ambient reservoir water, although the circulation pattern is quite similar to that in 

spring (Figure 7). This implies that the dominant mixing mechanism for this period was 

convective overtum as surface waters cooled. The river water temperatures during the late 

spring and summer were about 1 and 3 °C less than water temperatures in reservoir 

surface, respectively (Figure 8). This resulted in the development of an underflow during that 

periods. The flow moved straight along the slope of the reservoir and formed an upward 
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Figure 7. Seasonal reservoir circulation patterns during (a) early spring, (b) late spring, (c) summer, and (d) fall. 
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movement at the dam face. A strong wind speed during the late spring caused to develop a 

reversal flows near the surface of the reservoir. A weak reservoir mixing is detected near the 

dam and surface of the reservoir during the summer because of a short circuiting of flows. 

Reservoir thermal structure is a particular concern because it can results in water quality 

differences at various locations in the reservour. Figure 9 depicts the seasonal reservoir 

thermal structures using water temperature contours at various times. Simulation results 

agreed well with the observed values, which measured at surface (S), mid-depth (M), and 

bottom (B) of the reservoir at about 0.3 km upstream from the dam. The reservou: water 

temperatures were qiaite uniform in the vertical direction during the early spring (Figure 9a). 

The temperature variations in the vertical and longimdinaJ directions were 0.5 °C and 1.5 °C, 

respectively. The weak longitudinal stratification resulted from small temperature differences 

between river and reservoir waters. During the late spring (Figure 9b), vertical stratification 

was observed in the reservoir. The simulated water temperatures were about 1.5 °C higher at 

the surface and lower at the bottom of the reservoir compare to the observed values. This 

might be caused partially by the use of inaccurate model parameters for heat exchanges at 

water surface and bottom of the reservoir and the underestimation of the mixing effect of 

storm runoffs that occurred during this periods. During the summer (Figure 9c), the 

longitudinal and vertical variations of water temperatures were small. Simulated water 

temperatures near the dam ranging from 24 to 26 °C agreed well with the observed values, 

24.5-25 °C. A slightly colder river water appeared in the upper part of the reservoir and 

pushed the warmer reservoir water, which is well consistent with the unique circulation 

pattern described in the velocity vector during the same period (Figure 7c). The reservoir 

thermal structure in the fall is characterized as a well mixed condition in longitudinal and 

vertical directions (Figure 9d). The simulation results agreed well with observed water 

temperatures at three depths, except near the bottom of reservoir. In general, simulated water 

temperatures near the bottom of reservoir were underestimated over the entire simulation 

periods, which indicates a weak model performance in computing heat exchanges between 

water and sediments at the bottom of reservoir. 



www.manaraa.com

114 

Observed 
A 2.5 
O 3.0 
• 2.5 

Observed 
A 18.5 
O 18.5 
• 18.5 

15 20 25 30 

Distance (km) 

Figure 9. Simulated and observed seasonal thermal structures of the Saylorville Reservoir 
during (a) early spring, (b) late spring, (c) summer, and (d) fall. 
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Spatial Distribution of Atrazine 

Spatial distributions of toxic contaminants in a reservoir are particularly important to 

selective raw water intake, spill control, and downstream water quality management. The 

contamination levels of atrazine in the reservoir for four different seasons are depicted by 

simulated atrazine concentrations in Figure 10. The observed atrazine concentrations at 

surface, middle, and bottom of the reservoir are compared in the Figure. Comparisons 

between the thermal structures and the spatial distributions of atrazine concentrations indicate 

a strong relationship between them. 

In the early spring (Figure 10a), the simulated atrazine concentrations in the reservoir 

were uniform in the range of 19-21 ngA and compared well with the observed values at three 

depths. The well-mixed and low levels of atrazine concentrations during that period are 

mainly due to the steady state load of atrazine with low concentrations from upstream over 

the long winter periods of the previous year. The atrazine concentrations in the upstream river 

waters (Station 1) varied from 10 to 44 ng/1 during the winter periods. A weak vertical 

stratification of atrazine concentrations was observed in the late spring (Figure 10b), which is 

consistent with the simulated thermal structure of the reservoir during the same period 

(Figure 9b). Atrazine was distributed in the reservoir with concentrations of 800-1000 ng/1 

depending on the reservoir water depth. Predicted vertical distributions of atrazine near the 

dam agreed well with the observed values over the depths except at the bottom of the 

reservoir. 

During the summer, relatively high level of atrazine concentrations was located at the 

surface of the reservoir near the dam. This was expected from the insignificant mixing in the 

surface layers of reservoir as depicted in the circulation pattem in Figure 7c and well 

consistent with the thermal structure for that period (Figiire 9c). The successive inflows 

containing a lower level of atrazine followed by the peak concentrations, intruded into the 

reservoir below the surface, and flushed out the lower part of reservoir waters that contained 

elevated atrazine concentrations. The short circuiting of flows led to less dilution and resulted 

in higher atrazine concentrations near the surface of the reservoir. The distribution of atrazine 

concentrations during the fall is characterized as a well mixed condition in the vertical 
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Figure 10. Simulated and observed spatial distributions of atrazine in the Saylorville 
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www.manaraa.com

117 

direction with low levels of concentrations less than 100 ng/1. The significant vertical mixing 

induced by convective overturn (Figure 7d) removed the weak vertical stratification of 

atrazine that occurred during the summer. Although the model overestimated the maximum 

concentrations at the surface of reservoir, the overall model performance in predicting the 

spatial distributions of atrazine concentrations in response to seasonal flow behavior is 

satisfactory. 

Temporal Exposure Level of Atrazine 

Figure 11 shows the observed and simulated temporal variations of water temperatures 

and atrazine concentrations at three depths (surface, middle, and bottom) in the reservoir. The 

simulated results accurately tracked the variations of observed water temperatures over the 

entire simulation periods. In general, no strong thermal stratification was noticed from both 

observed and simulated water temperatures, although the model results showed a trend of 

slightly higher water temperature near the surface than at the bottom of the reservoir during 

the summer months. The simulated atrazine concentrations are in reasonably good agreement 

with the measured values at all depths. A weak vertical stratification displayed in the 

simulated atrazine concentrations during the summer months is directly associated with the 

thermal structure of the periods. The model successfiilly captured the peak concentrations 

occurred at the end of May and in early June in the reservoir. The observed peak atrazine 

concentrations (greater than 1356 ng/1) at the inflow boundary. Station 1, on 5/16 resulted in 

the occurrence of peak concentrations in the reservoir after 15 days, and the model captured it 

reasonably well. The travel time (or response time) of atrazine (15 days) was slightly less 

than the residence time of flow 17-19 days, which calculated from reservoir volume and 

flows, indicating that the effect of flow short circuiting on the transport of the contaminant is 

insignificant in the shallow Saylorville Reservoir. 

Time series of the averaged water temperatures and atrazine concentrations over the 

depth are presented in Figure 12. The r value, which is used as an indicator for the 

performance of the model in predicting the temporal variations of observed temperatures and 

concentrations, is 0.97 and 0.84 for water temperature and atrazine concentrations, 

respectively. The r^ values implies that the model is reliable in generating the temporal 
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variations of water temperatures and atrazine contamination levels in the reservoir. The 

results may be attributed to the accuracy of the estimated model inputs and the time-variable 

kinetic transformation rates of atrazine obtained in the previous study. 

To address the important aspect of a site-specific and time-variable kinetic 

transformation rate of atrazine for modeling of the contaminant fate in surface water, the 

model results obtained with a constant half-life value, 60 days that is generally known for 

atrazine half-life, are also presented in Figure 12b for comparison. Overestimation of atrazine 

concentration associated with the assumption of steady atrazine persistence (half-life 60 days) 

became significant after April and maximized at the time of peak concentrations in early 

June. The simulated peak atrazine concentration was about 1400 ng/1 at the end of May with 

the constant half-life, which is about 40% overestimation compare to the observed value and 

the simulated value with time-variable half-life (1000 ngA). On the average, the assumption 

of steady atrazine persistence resulted in about 30% overestimation in the prediction of 

concentrations for the entire periods. This emphasizes that an accurate estimation of the 

kinetic transformation rate of atrazine for a specific aquatic environment should be made to 

obtain good model results. This is because the persistence of a toxic chemical in an aquatic 

system is quite different under different envirormiental conditions and during different 

seasons (i.e., temperature, sunlight, and microorganism) (Gladyshev and Gribovskaya 1994; 

Chung and Gu 1998). 

Conclusions 

The fate and transport processes of atrazine in the Saylorville Reservoir, Iowa were 

investigated using the observed and simulated seasonal flow circulation patterns, thermal 

structures, and spatial and temporal distributions of atrazine concentrations. The results of 2D 

reservoir toxic model revealed that the fate and transport of atrazine in the reservoir are 

strongly related to the seasonal circulation patterns, thermal structures, and environmental 

conditions of the reservoir as well as its physico-chemical properties. In general, no strong 

thermal stratification was noticed firom both observed and simulated results. The effect of 

flow short circuiting on the transport of atrazine was notable during summer as less 
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mixing and conesponding higher concentrations occurred near the surface of the reservoir. 

The model accurately simulated the temporal variations of observed atrazine concentrations 

and captured the peak concentrations during the end of May and early Jime. The use of the 

site-specific and time-variable kinetic transformation rates of atrazine led to more accurate 

predictions of atrazine concentrations. The assumption of steady or constant atrazine 

transformation rate over the entire periods resulted in a 40% overestimation in predicting 

peak concentrations. Therefore, it is recommended that an accurate estimation of atrazine 

transformation rates in a specific aquatic environment or during a season should be 

performed before model application because the persistence of a toxic chemical is 

substantially affected by environmental conditions such as temperature, sunlight, and 

microbial concentrations during different seasons. 

The Saylorville Reservoir and the watershed are typical in the Midwest of United States 

where tons of herbicides are applied in upstream watersheds farm lands for an intensive crop 

production. Therefore, the results presented here can provide a useful guide for reservoir 

water quality modeling and herbicides control in other reservoirs in the region or other 

agricultural areas. The methodology and model application processes employed in this study 

can also be used to investigate the fate of other commonly detected herbicides such as 

alachlor, cyanazine, and metolachlor. If field monitoring data are not available or sufficient in 

a reservoir, a watershed model is needed to generate the reqiured input data. Unfortunately, 

most of the watershed-scale models are rarely validated and need further improvement for the 

simulation of transport and transformations of toxic substances. These are areas of research 

and investigation requiring further work to better understand the fate and transport processes 

of agricultural chemicals along the entire pathway of pollutants in overland flow, surface 

runoff, groundwater, and stream flow. 
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Notations 

The following symbols are used in this paper: 

p = the fraction of solar radiation absorbed in surface layer, 

s = the light extinction coefficient for pure water; 

<!> the porosity of the bed sediment; 

<I>NPS = the mass flow rate per unit volume via runoff and drainage flow (g/mVsec); 

A. = longitudinal eddy viscosity (mVs); 

B = waterbody width (m); 

Ca = the vapor phase concentration of atrazine (g/m^); 

Q = the concentration of atrazine in the distributed load (mg/m^); 

Cp.w = the particulate concentration of atrazine in the water column (g/ m^); 

Css • = the suspended solids concentration (kg/m^); 

C.. = the total concentration of atrazine in the bed sediment (g/ m^); 

Qw the total concentration of atrazine in the water column (g/ m^); 

D. longitudinal eddy diffiisivity (m"/s); 

D. = vertical eddy diffiisivity (mVs); 

A = fraction of com and soybean cropping area in the drainage area; 

A = fraction of com cropping area inyj; 

/3 = fraction of atrazine applied area 'mf{. 

/4 = fraction ofA^  which delivered to surface water; 

/d fraction of dissolved form of chemical to total chemical; 

/p = fraction of particulate form of chemical to total chemical; 

H Henry's law constant (atm-mVmol); 

K, = the first-order transformation rate of atrazine; 



www.manaraa.com

126 

Kf = diffusive exchange rate between water and pore water of the bed (m/day); 

ATg = the gas film coefficient; 

ki = overall volatilization transfer rate (m/day); 

= the liquid film coefficient; 

Kp = the partition coefficient of atrazine (1/kg); 

MCL = the maximum contamination level (jig/l); 

M<j = direct atrazine mass loading via siu-face runoff and seepage flows (kg/day); 

Qd = estimated distributed runoff"and seepage flows (m^/day); 

r = the concentration of atrazine expressed on a dry weight solids basis (mg/kg); 

= fraction of direct annual mass load occurring in month i; 

t = time; 

= the water temperature (°C); 

U = longitudinal flow velocities (m/sec); 

Vj = the net settling velocity of sorbed chemical (m/sec); 

W = vertical flow velocities (m/sec); 

X = longitudinal Cartesian coordinate (positive to the right); 

y = the depth of water from reservoir bottom (m).; and 

z = the depth of water from water surface (m). 
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CHAPTER 5. VALffiATION OF EPIC FOR TWO WATERSHEDS 
IN SOUTHWEST IOWA 

A paper submitted to the Journal of Envirormiental Quality 

S. W. Chung, P. W. Gassman, L. A. Kramer, J. R. Williams, and R. Gu 

Abstract 

The Erosion Productivity Impact Calculator (EPIC) model was evaluated using long-

term data collected for two Southwest Iowa watersheds in the Deep Loess Soil Region, which 

have been cropped in continuous com {Zea Mays L.) under two different tillage systems 

(conventional tillage versus ridge-till). The annual hydrologic balance was calibrated for 

both watersheds during 1988-94 by adjusting the runoff curve numbers and residue effects on 

soil evaporation. Model validation was performed for 1976-87, using various statistical tests. 

The errors between the 12-year predicted and observed means or medians were less than 10% 

for nearly all of the hydrologic and environmental indicators, with the major exception of a 

nearly 44% over prediction of the N surface runoff loss for Watershed 2. The predicted N 

leaching rates, N losses in surface runoff, and sediment loss for the two watersheds clearly 

showed that EPIC was able to simulate the long-term impacts of tillage and residue cover on 

these processes. However, results also revealed weaknesses in the model's ability to replicate 

year-to-year variability, with r^ values generally below 50% and relatively weak goodness-of-

fit statistics for some processes. This was due in part to simulating the watersheds in a 

homogeneous manner, which ignored complexities such as slope variation. Overall, EPIC 

was able to replicate the long-term relative differences between the two tillage systems and 

that the model is a useful tool for simulating different tillage systems in the region. 

Introduction 

Agricultural decision makers are encountering increasingly complex challenges in 

ensuring a stable and cost-efficient food supply. These challenges are multi-faceted, often 

requiring that management and policy alternatives be considered both for potential economic 
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and environmental impacts. For instance, an agricultural policy change that results in crop 

production shifts can also trigger questions concerning the corresponding water quality and 

soil erosion effects. Field and monitoring studies provide essential data and critical answers 

for many of these types of questions. However, field studies are prohibitively costly to 

perform across all possible landscape, weather, management, and cropping system 

combinations, especially for large agricultural regions. Also, monitoring of water quality, 

soil erosion, and/or other environmental indicators only captures baseline conditions, and will 

not provide projections of future impacts that result firom current policy decisions. 

For these reasons, increasing applications of integrated modeling systems are being 

made that provide economic and environmental outcomes in response to alternative 

management systems and/or agricultural policies. Integrated modeling systems range fi-om 

farm-level (Foltz et al. 1993; Taylor et al. 1992; Wossink et al. 1992), to watershed 

(Bouzaher et al. 1990; Lakshminarayan et al. 1991), and ultimately to regional (Bemardo et 

al. 1993; Bouzaher et al. 1995; Lakshminarayan et al. 1996) applications. In each of these 

systems, flmctions and/or models are incorporated to predict environmental indicators for 

different combinations of landscape, soil, management, and climate conditions. 

The Erosion Productivity Impact Calculator (EPIC) model (Williams 1990; Williams 

1995) has been adapted within several integrated modeling systems, because of its flexibility 

in handling a wide array of crop rotations, management systems, and environmental 

conditions. Originally, EPIC was designed to simulate the impacts of erosion on soil 

productivity (Williams et al. 1984). Current versions of EPIC can also produce indicators 

such as nutrient loss fi-om fertilizer and animal manure applications (Edwards et al. 1994; 

Phillips et al. 1993), climate change impacts on crop yield and soil erosion (Favis-Mortlock 

1991; Stockle et al. 1992; Williams et al. 1996), losses fi-om field applications of pesticides 

(Williams et al. 1992), and soil carbon sequestration as a fiinction of cropping and 

management systems (Mitchell et al. 1998). 

The flexibility of EPIC has led to its adoption within the Resource and Agricultural 

Policy System (RAPS), an integrated modeling system designed to project shifts in 

production practices (crop rotations, tillage levels, and conservation practices) and evaluate 
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the resulting environmental impacts, in response to agricultural policies implemented for the 

North Central United States (Babcock et al. 1997). The focus of the EPIC applications 

within RAPS is to provide nitrogen loss and soil erosion (both wind and water) indicators in 

response to variations in crop rotation, tillage, soil, fertilizer applications, and environmental 

conditions. Although EPIC has proven to be a robust tool within RAPS, there is an ongoing 

need to test the model with as much site-specific data as possible, to further improve its 

prediction capabilities. To date, limited validation studies of EPIC with field data have been 

performed in the RAPS study region; thus, testing of EPIC with site-specific data has been 

incorporated as a component within RAPS. 

The goal of this study is to test EPIC version 5300 (EPIC5300) using long-term data 

sets collected by the U.S. Department of Agriculture - Agricultural Research Service 

(USDA-ARS) at two field-sized watersheds denoted as Watersheds 2 and 3 located in 

southwestern Iowa (Kramer et al. 1989; Kramer and Hjelmfelt 1989; BCramer et al. 1990). 

These watersheds are representative of ±e 2.2 million ha Deep Loess Soil Major Land 

Resource Area (MLRA 107) that covers much of westem Iowa and northwestern Missouri. 

Water balance, sediment, and nutrient loss data have been collected from both watersheds, 

which have been cropped with continuous com (Zea Mays L.) and managed with contrasting 

tillage systems (conventional versus ridge tillage) for at least two decades. 

The effect of conservation tillage systems relative to conventional tillage systems on 

water balance, nutrient transport, soil loss, and crop yield can range from slight to substantial 

(Singh and Kanwar 1995; Phillips et. al 1980; Christensen and Norris 1983; Steiner 1989). 

At Treynor, Kramer et. al (1989) reported reduced surface runoff, increased seepage flow, 

and increased leached nitrogen for the Watershed 3 ridge-till system relative to the 

conventional tillage system used for Watershed 2. Kramer and Hjelmfelt (1989) also found 

that the ridge-till system greatly reduced soil erosion during storms of high erosion potential 

compared to the conventional tillage system. 

The objectives of this research are to confirm that EPIC5300 can replicate the impacts 

of the two different tillage systems by; (1) calibrating the model using observed water 

balance data for the period 1988-94; and (2) validating the simulated water balance, nutrient 
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loss, and crop yields using measured data for 1976 through 1987. Estimates of soil erosion 

are also reported; however, these could not be compared directly with measured data. 

Summary statistics and graphical comparisons are the primary tools used to assess model 

validity; parametric and nonparametric statistical tests are also used within the validation 

step. 

Materials and Methods 

Watershed Description 

Watersheds 2 and 3 cover 34.4 and 43.3 ha over rolling topography defined by gently 

sloping ridges, steep side slopes, and alluvial valleys with incised channels that normally end 

at an active gully head, typical of the deep loess soil in MLRA 107 (Kramer et al. 1990). 

Slopes usually range from 2-4 % on the ridges and valleys and 12-16 % on the side slopes. 

An average slope of about 8.4 % was estimated for both watersheds, using first-order soil 

survey maps. The major soil types are well-drained Typic Hapludolls, Typic Udorthents, and 

Cumulic Hapludolls (Marshall-Monona-Ida and Napier series), classified as fine-silty, mixed, 

mesics. The sxirface soils consist of silt loam and silty clay loam textures that are very 

erosion prone, requiring suitable conservation practices to prevent serious gully and sheet-rill 

erosion. 

The regional geology is characterized by a thick layer of loess overlying glacial till, 

that together overlay bedrock. The loess thickness ranges from 3 m in the valleys to 27 m on 

the ridges. Seepage flow continuously discharges into the valley gully charmels from a 

saturated zone located at the loess-till interface, due to the much greater permeability of the 

loess. Stream flow at each watershed outlet, consisting of the perennial seepage flow and 

surface runoff dxiring storm events, was continuously recorded with instrumented broad 

crested V-notch weirs. Precipitation was measured with three Universal recording rain 

gauges placed on each of the watershed boundaries. 

Watershed 2, cropped with continuous com, has been consistently managed with 

conventional tillage on the approximate contour from 1964 through the study period. The 

conventional tillage system consisted of moldboard plowing or heavy tandem disking around 
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mid-April to incorporate com stalk residues, followed by shallower tandem disking or field 

cultivation about two weeks later to complete seedbed preparation. One or two cultivations 

were performed during the growing season for weed control. An average annual equivalent 

mineral nitrogen (N) application rate of 185 kg/ha was applied to Watershed 2 during 1976-

94, the period used for the simulation study. 

Watershed 3 was originally managed as bromegrass pasture from 1964 to 1971 and was 

converted in 1972 to a continuous com ridge-till plant system consisting of an early May 

planting with a 4-row Buffalo till planter in the com residue on the approximate contour. 

One or two cultivations with a 4-row Buffalo cultivator were performed to control weeds and 

to construct ridges along the com rows. The average armual N application rate at Watershed 

3 was 169 kg/ha during 1976-94 (1972-75 data were assumed to represent a land use 

transition and were considered nonrepresentative of the ridge-till system). The average 

Watershed 3 residue coverage was estimated to be about 60%. 

Simulation Methodology and Input Data 

The EPIC model can be subdivided into nine separate components (Williams 1990) 

defined as weather, hydrology, erosion, nutrients, soil temperature, plant growth, plant 

environment control, tillage, and budgets (Williams 1990). It is a field-scale model, designed 

to simulate drainage areas of up to 100 ha (Williams et al. 1996) that are characterized by 

homogeneous weather, soil, landscape, crop rotation, and management system parameters. 

It operates on a continuous basis using a daily time step and can perform long-term 

simulations of hundreds of years. More detailed discussions of EPIC are given in Williams 

(1990) and Williams (1995). 

The average slope of 8.4% was assumed for both watersheds, to satisfy the requirement 

of homogeneity. The dominant soil tjqje, Monona, was also assumed representative of both 

watersheds for the EPIC simulations. Up to 20 soil layer parameters can be input into EPIC; 

required values include layer depth, bulk density, wilting point, field capacity, percentage 

sand, percentage silt, pH, and percentage organic carbon. Table 1 lists the layer data for the 

1.8 m Monona soil profile. This data was primarily obtained from the USDA (USDA. 1991. 

Primary characterization data, project 8IP 92, Pottawattamie County-Treynor Exp. Station. 
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Table 1. Properties by layer for the Monona soil. 

Soil layer 

Property 
1 2 

'y 
J 4 5 6 7 8 9 

Depth (m) .01 0.05 0.20 0.35 0.50 0.85 1.10 1.55 1.80 

BD (Mg/m') 1.08" 1.08 1.25 1.38 1.26 1.28 1.35 1.41 1.44 
(0.87)" (0.87) 

WP' (mVm^) 0.13 0.13 0.13 0.13 0.12 0.12 0.11 0.11 0.12 

FC" (mVm^) 0.25 0.25 0.25 0.26 0.26 0.26 0.28 0.27 0.28 

Sand (%) 4.3 4.3 4.1 3.7 5.1 5.4 6.1 6.3 6.4 

Silt (%) 68.7 68.7 68.3 68.9 70.2 70.3 73.0 71.4 73.5 

Soil pH 5.5 5.5 5.5 7.3 7.4 7.6 8.0 8.0 8.0 

Org. C (%) 1.97 1.97 1.21 0.68 0.38 0.30 0.24 0.17 0.16 

"Bulk density for Watershed 2 under conventional tillage system. 

""A Bulk density for Watershed 3 under ridge tillage system. 

^Wilting point. 

•^Field capacity. 
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U.S. Dept. Agric., Soil Conser. Sen, National Soil Survey Lab., Lincoln, NE). Bulk density 

inputs for the upper 20 cm are mean values measured by Kramer and Grossman (1992) 

during the spring season between 1979 and 1991 (no measurements were made in 1988-89). 

The surface layer pH values (top 20 cm) were based on meastirements made in Watersheds 2 

and 3 in 1989 and 1995 (Kramer 1995, USDA-AR5, National Soil Tilth Laboratory, Deep 

Loess Research Station, Council Bluffs, Iowa). These low pH values resulted from little or no 

liming inputs over several years. The pH values for the remainder of the profile were 

obtained from Monona soil data included in the EPIC soil database (Mitchell et al. 1996). 

EPIC is driven by observed and/or simulated daily climatic inputs that include total 

precipitation, maximum and minimum air temperature, total solar radiation, average relative 

humidity, and average wind speed. Measured precipitation and temperature values were 

input for the 19-year simulation period. The remaining climatic inputs were generated using 

monthly weather statistics for Oakland, Iowa, located approximately 25 km northeast of the 

watersheds, the nearest climatic station available in the EPIC weather generator parameter 

database. The average annual precipitation levels were 824 and 802 mm at Watersheds 2 and 

3 during 1976-94, reflecting the variability in rainfall patterns and amounts that occur within 

the 3 km distance between the two watersheds. 

Simulation of tillage, planting, fertilizer, and harvest passes were performed on the 

dates recorded for each year. A single date was assumed for operations that spanned several 

days. The simulated amounts and forms of N fertilizer were varied annually according to 

records for both watersheds. Total amounts of N applied ranged from 166 to 237 kg/ha and 

160 to 190 kg/ha for Watersheds 2 and 3 during the 1976-87 validation period (N 

applications were also simulated during the calibration period). For Watershed 2, 90% of the 

applied N was simulated as anhydrous ammonia injected 20 cm deep and the remaining 

portion was surface-applied. The majority of N used on Watershed 3 was assumed surface-

applied; simulation of anhydrous ammonia was also performed for a portion of the total N 

application during 1976-78. Tillage passes simulated in EPIC directly affect soil bulk 

density and residue cover levels. Reduced tillage will result in higher amounts of simulated 

residue cover and thus lower erosion losses. However, the impact of tillage on the 
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hydroiogic balance has to be indirectly simulated by adjusting curve numbers. Simulation of 

constructed ridges for Watershed 3 was not feasible in EPIC and thus a no-till planter was 

assumed representative of the Buffalo till planter. 

Calibration Process 

The EPIC calibration process focused primarily on the infiltration and runoff partition 

at the soil surface and the effects of soil residue on the soil evaporation portion of 

evapotranspiration (ET). The 1988-94 time frame was chosen as the calibration period 

because it included the driest (just over 400 mm in 1988) and wettest (over 1300 mm in 

1993) years in the entire 19-year precipitation record, allowing the remaining 12-year period 

(1976-87) to be used for validation. Calibration of nutrient and sediment losses, and crop 

yield, were not performed because (1) data were not available for some of these indicators 

over all of the calibration period, and (2) these indicators are a direct function of the 

hydroiogic balance. 

Comparisons between EPIC output and measured seepage flows was difficult, because 

leaching was only simulated to a 1.8 m depth in EPIC. An approximate comparison 

approach was used, in which the combined EPIC leaching and lateral subsurface flow output 

were assumed to be equal to the measured seepage flows in the gully channels. However, 

correlation analyses performed for 1976-94 between the measured annual precipitation and 

seepage flows showed r values of 0.15 and 0.50 for Watersheds 2 and 3. This indicates that 

a lag-time greater than one year exists before much of the infiltrated precipitation discharges 

from the gullies, especially for Watershed 2. Thus, comparing measured seepage flows with 

EPIC predictions has limited meaning on an annual basis. 

The USDA Soil Conservation Service (SCS) runoff curve number method (Mockus 

1972) is used to partition precipitation between infiltration and runoff volume in EPIC, with 

modifications incorporated for slope and soil profile water distribution effects as described by 

Williams (1995). The effect of frozen soil on surface runoff is also simulated. Standard 

runoff curve numbers (CN2) have been tabulated for different hydroiogic soil-cover 

complexes and antecedent moisture condition 2 (average moisture conditions for the 

preceding five day period) as given in Mockus (1969). These CN2 values represent 
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conventional tillage practices and need to be reduced to reflect the impacts of conservation 

tillage (Rawls et al. 1980; Rawls and Richardson 1983). Thus, a key calibration step for the 

EPIC simulations was the adjustment of the curve number for Watershed 3 to reflect the 

effects of surface residue and ridges, as described in the calibration results section. 

Adjustment of residue impacts on the soil evaporation portion of ET was also 

performed in the calibration phase. "Measured ET' was inferred for both watersheds by 

using an armual water balance equation in which ET was set equal to precipitation minus 

surface runoff and seepage flow, assuming steady state soil water storage changes (dS/dt=0) 

from year to year. Field measurements of surface runoff and seepage flow over 1976-94 

indicated that less ET occurred from Watershed 3 relative to Watershed 2, implying that the 

greater residue cover on Watershed 3 led to more infiltration and seepage flow, and 

conversely less ET. Phillips et al. (1980) reported a similar response for a four-year study in 

central Kentucky, where ET rates under conventionally-tilled continuous com averaged 85 

mm per year (20%) more than that for no-tilled continuous com. 

EPIC computes soil water evaporation and plant transpiration separately by an 

approach similar to that of Ritchie (1972). The depth distributed estimate of soil water 

evaporation may be reduced according to the following equation if soil water is limited in a 

layer 

SEV; = SEV, sw, < FC, (1) 

SEVf = SEVi, SW, > FC, (2) 

where SEV/ is the potential soil evaporation for layer / (mm), SEV* is the adjusted soil water 

evaporation (mm), SW is the soil water content for layer / (mm), FC is the field capacity 

(mm), and WP is the wilting point (mm). Parm(12) is a parameter that governs the rate of 

soil evaporation from upper 0.2 m of soil as a function of residue cover. The effect of the 

Watershed 3 residue cover on soil water evaporation was simulated by adjusting parm(12), as 

discussed in the calibration results section. 
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A final calibration step was the selection of the minimum C factor values for 

simulating water erosion with the Universal Soil Loss Equation (USLE) option (Wischmeier 

and Smith 1978) in EPIC. The C-factor measures the combined crop and residue cover 

effects upon soil erosion for a given management system, relative to the corresponding soil 

loss that would occur for the same landscape under conditions of clean-tilled continuous 

fallow (Wischmeier and Smith 1978). For this study, the appropriate C-factors of 0.2 for 

Watershed 2 and 0.023 for Watershed 3 were chosen on the basis of model documentation 

and guideline of Natural Resources and Conservation Service (NRCS 1990) rather than 

actual calibration. 

Slope lengths of 81.4 and 79.4 m were simulated for Watersheds 2 and 3, which were 

derived form topographic maps for a previous set of USLE calculations (USDA-ARS, 

unpublished data. Deep Loess Research Station, Treynor, Iowa). These slope lengths 

represent the cropped portions of the watersheds that include the upland ridges and sideslope 

areas. The EPIC USLE simulations provided estimates of sediment loss to the bottom of 

these slopes, using the assumed average gradient of 8.4% for each watershed. These USLE 

estimates could not be directly compared with the measiu-ed soil erosion levels at the gully 

headcuts, because sediment movement from the steeper sideslopes to the gully headcuts must 

be estimated by applying sediment delivery theory. However, the USLE estimates do provide 

an indication of the model's ability to replicate tillage and residue impacts on erosion. 

Model Evaluation Methods 

Summary statistics and goodness-of-fit measures were selected to evaluate the model 

performance, following suggestions given by Loague and Green (1991) and Zacharias et al. 

(1996) for normally and non-normally distributed parameters. The summary statistics for the 

normally distributed variables include long-term means, standard deviations, the percentage 

error (E), and the coefficient of determination (r^). The median and median absolute 

deviation (MAD) were used for the non-normally distributed variables instead of the mean 

and standard deviation. The MAD is expressed as: 

MAD = 1.4826 x median {1^^^ -x„|: / = 1,2,...,n} (3) 
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where x/ is the i* observation, Xm is the sample median, and n is the sample size. These 

summary statistics, along with graphical illustrations, were the primary means of comparison 

between model output and field measurements. 

Goodness-of-fit measures were used to further assess the difference between the 

predicted and observed values (residual errors analysis). Statistical tests were performed with 

SAS (SAS Inst. Inc. 1989) to assess whether the measured data (annual totals over 1976-94) 

were normzilly or non-normally distributed and thus determine the appropriate statistical 

measures (Table 2). All the hydro logic variables were identified as being normally 

distributed at a significance level of a= 0.1. However, the tests indicated that nitrate losses 

via leaching and runoff, soil erosion, and crop yield were distributed in a non-normal fashion. 

Goodness-of-fit tests selected for evaluating the normally distributed indicators include 

the normalized root mean square error (RMSE), modeling efficiency (EF), and coefficient of 

residual mass (CRM): 

RMSE = 'Z iP . -O.y /n  
'=1 

100 
(4) 

EF = (Zl.O, -0„)- -t,(.P,-0,)-)/'^(.0,-O.y (5) 

CRM.(±0 , -±P, ) /±0 ,  (6)  
/=!  /«!  /«!  

where 0/ and Pi are the observed and predicted values at each comparison point i, n is the 

number of observed and predicted values that are being compared, and Om is the mean or 

median of the observed values. In contrast, the normalized median absolute error (MdAE) 

and robust modeling efficiency (REF) are used to evaluate the goodness-of-fit of the non-

normally distributed variables: 

MdAE = median{\Oi - P^\: / = 1,2,...,«} x (^^) 
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Table 2. Results of the univariate normality test for the observed annual hydrologic and 
environmental state variables. 

P-value Averaged 

State Variables Watershed 2 Watershed 3 P-value Normality'' 

Precipitation 19 0.9772 0.9521 0.9647 Normal 

Surface runoff 19 0.3298 0.0431 0.1865 Normal 

Seepage flow 19 0.0286 0.2146 0.1216 Normal 

ET 19 0.7676 0.1975 0.4826 Normal 

N03-N leaching 15 0.0056 0.1025 0.0541 non-normal 

N03-N runoff 15 0.0001 0-0001 0.0001 non-normal 

Soil erosion 17 0.0001 0.0001 0.0001 non-normal 

Crop yield 19 0.0001 0.0001 0.0001 non-normal 

®n is the number of years. 

"A normality test was used to test the null hypothesis HQ: Normal distribution, vs. the 

alternative hypothesis Non-normal distribution with level of significance, a=0.1. 
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= U2,..,n} 

median{\0,-0J:i = lX..,n} ^ 

The RMSE and MdAE are basically the overall difference in the sum of squares 

normalized to the number of observations. The desired value is zero for the RMSE, MdAE, 

and CRM, and one for the EF and REF. Negative values can result for the EF, CRM, and 

REF measures. Negative values for the CRM indicate model overprediction while positive 

CRM values point to a trend in underpredicting the observed data. Negative EF and REF 

values suggest that it is better to use the observed mean than the model predictions. 

Explicit standards for model evaluation using these statistics are not established, partly 

because the judgment of model results is highly dependent on the purpose of the model 

application. Clouse and Heatwole (1996) further state that "no guidelines for rating model 

performance based on these statistics have been established, therefore they are primarily 

useful in assessing which modeling scenarios are predicted better than other scenarios". 

They simply evaluated the goodness-of-fit statistics in terms of how close they were to the 

optimum values. A similar approach was used by Penell et al. (1990) who compared output 

from several pesticide leaching models. However, Ramanarayan et al. (1997) took a different 

approach by setting definitive criterion for several statistics including 0.5 for r. 

For this study, the following criteria were set to assess if the model results were 

satisfactory: RMSE and MdAE < 50%, EF and REF > 0.3, and -0.2 < CRM < +0.2. 

Standards of < 20% for E and >0.5 for r were also set, which have optimum values of zero 

and one. These standards provide a useful guideline to indicate when the model predictions 

are deviating greatly from the observed values. 

Results and Discussion 

Model Calibration 

To simulate the differences between these two tillage systems, the CN2 and parm(12) 

values were calibrated in EPIC using armual surface nmoff, seepage flow, and ET levels 
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observed from 1988 to 1994. The CN2 and parm (12) values were adjusted until the 

percentage error between the observed and simulated average values were less than 5 %. 

Table 3 shows the calibrated parameter values for the CN2 and parm (12). The calibration 

process for Watershed 2 resulted in a CN2 value of 74, a slight reduction from the standard 

value of 75 (Mockus 1969). The Watershed 2 calibration also resulted in a parm(12) value of 

4.0, a slight increase over the EPIC default value of 2.5. 

The Watershed 3 calibration resulted in a curve number of 61, which is a reduction of 

about 19% from the standard value of 75. Rawls et al. (1980) analyzed surface runoff data 

from small watershed and plot areas managed under different tillage systems, to determine 

appropriate CN2 adjustments for different residue coverage levels. They showed a maximum 

CN2 reduction of 10% would occur for conservation tillage systems leaving greater than 60% 

residue cover. Rawls (Rawls, W.J. 1997. Personal communication, U.S. Dep. Agric., 

Agric. Res. Ser., Beltsville, MD) confirmed that an even greater CN2 reduction could be 

expected with ridge tillage, due to the "mini-terracing" effects of the ridges. A parm(12) 

value of 14 was selected based on the Watershed 3 ET calibration, reflecting the effect of 

greater residue cover on ET. 

Table 3. Model parameters for conventional and ridge till systems in Treynor, I A. 

Parameters Watershed 2 (CT)'' Watershed 3 (RT)*" 

CN2 74 61 

Parm (12) 4.0 14 

'Conventional tillage system. 

""Ridge tillage system. 

Table 4 shows the summary statistics of observed and simulated hydrologic variables 

after calibration. The percentage errors between the simulated and observed average surface 

runoff, seepage flow, and ET levels were all less than 5%. The majority of the variability 

between years was also captured by EPIC (average r= 0.75). However, the weak r^ for the 
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Table 4. Observed and simulated annual hydrologic variable summary statistics for the 1988-
1994 calibration period. 

Observed Simulated 

Watershed Variables Mean Std. Dev. Mean Std. Dev E' r^ 

mm 

Surface runoff 51.7 66.9 53.2 40.3 +2.8 0.92 

2 Seepage flow 155.2 123.1 148.9 200.5 -4.2 0.42 

ET 583.1 200.9 581.2 39.8 -0.3 0.76 

Surface runoff 32.5 48.8 32.0 31.4 -1.7 0.83 

3 Seepage flow 210.3 125.5 214.0 213.9 +1.8 0.74 

ET 541.3 159.4 538.1 36.1 -0.6 0.83 

'Percent error = (simulated-observed)/observed xlOO. 

Watershed 2 seepage flow underscores the problem of comparing EPIC output with the 

measured seepage flow, due to the previously discussed lag-time issue. This comparison 

difficulty is further confirmed by the much greater seepage flow standard deviations 

predicted by EPIC, as compared to the observed values. The large discrepancy between the 

simulated and observed ET standard deviations indicate that the steady state assumption for 

soil water storage is valid over the long-term but does not hold on an annual basis. 

Apparently, excess soil moisture is stored in the unsaturated and saturated zones below the 

root zone during wetter periods and then discharged during drier periods, which violates the 

assumption of dS/dt = 0 on an annual basis. 

Model Validation 

The calibrated model was validated against a second set of observed data for 1976-87 

that included annual surface runoff, seepage flow, ET, nitrate-nitrogen (NOj-N) losses via 

leaching and runoff, soil erosion, and crop yield. Short- and long-term predictions for each 

indicator were validated by comparing both armual and 12-year average estimates with field 

data. 
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Water balance 

The summary statistics of observed and simulated 12-year average hydrologic variables 

are compared in Table 5. The statistics indicate that predicted mean surface runoff, seepage 

flow, and ET are in good agreement with observed values for both watersheds. The percent 

error of each estimated indicator is within 5% of the corresponding observed level, except 

Table 5. Observed and simulated annual hydrologic variable summary statistics for the 1976-
1987 validation period. 

Observed Simulated 

Watershed Variables Mean Std. Dev. Mean Std. Dev. E® r^ 

mm 
Surface runoff 74.4 39.3 76.0 39.3 +2.1 0.62 

2 Seepage flow 141.6 57.4 155.7 82.8 +10.0 0.37 

ET 627.6 144.9 612.0 35.4 -2.5 0.69 

Surface runoff 40.0 23.7 40.1 21.7 +0.2 0.59 

3 Seepage flow 218.8 82.2 211.7 93.1 -3.2 0.48 

ET 553.7 100.2 560.9 35.9 +1.3 0.44 

Tercent error = (simulated-observed)/observed x 100. 

for the Watershed 2 mean seepage flow. Data analysis of Watershed 2 has revealed that the 

seepage flow component of the overall runoff has increased during the later part of the study 

period, for unexplained reasons. Thus, a calibration performed for 1988-94 can be expected 

to result in overprediction of the seepage flow in earlier years. The large difference between 

the simulated and observed ET standard deviation values again reveals the weakness of the 

steady state soil water storage assumption. The r^ values are generally satisfactory, with the 

weakest explanatory power for the Watershed 2 seepage flow and Watershed 3 ET levels. 

Armual time series of observed precipitation, runoff, and seepage flow, and simulated 

surface runoff and seepage flows are plotted in Figures l.a. and l.b. In most years, EPIC 
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Figure 1. Annual precipitation, observed and simulated surface runoff and seepage flows for 
(a) Watershed 2 and (b) Watershed 3 during the validation period. 
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reliably tracked the annual level of observed surface runoff for both watersheds. The model's 

ability to track seepage flow was not as consistent, especially for Watershed 2. This 

conforms to expectations because water movement was not simulated through the deeper 

loess to the gully discharge points. The seepage flow comparisons reveal trends of 

overprediction during wetter years and underprediction during the driest years. This may be 

due in part to the simple storage routing technique used in EPIC to simulate percolation and 

lateral subsurface flow, that does not allow for more complex water movement such as the 

effect of matric potential on the upward movement of soil water (Warner et al. 1995). 

However, it is also clearly a function of the inability to simulate the water flow throughout 

the complete system, thus missing dynamics such as water storage during wetter periods that 

is subsequently discharged during drier years. 

The goodness-of-fit measures for the predicted hydrologic outputs are sunmiarized in 

Table 6. Based on the previously established criterion, the goodness-of-fit statistics are all 

satisfactory except the EF seepage flow of 0.26 for Watershed 3, which was slightly below 

Table 6. Parametric model evaluation statistics for the simulated hydrologic variables over 
the 1976-1987 validation period. 

Watershed 2 Watershed 3 

State RMSE^ EF" CRM' RMSE EF CRM 

Variables O
 

o
 o. (1.0) (0.0) (0.0) (1.0) (0.0) 

Surface runoff 32.5 0.59 -0.02 34.5 0.56 0.00 

Seepage flow 46.0 0.40 -0.10 30.9 0.26' 0.03 

ET 18.3 0.32 0.04 14.0 0.35 0.00 

"Normalized root mean square error (%). 

•"Modeling efficiency. 

"Coefficient of residual mass. 

"^Optimal value. 

"Underlined value is outside of target criteria. 
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the cutoff of 0.3. The negative CRM value of -0.1 for the Watershed 2 seepage flow 

indicates that the model tended to slightly overpredict this variable. Otherwise, little 

systematic model over- or underprediction occurred. 

Nitrogen, soil losses, and crop yield 

Observed and simulated 12-year median, MAD, E, and r^ values are listed in Table 7 

by watershed for the N loss and crop yield indicators. Median and MAD values are also 

shown for the soil erosion estimates, but % error and r calculations were not performed 

because the soil erosion estimates could not be compared with the measured data. The 

predicted 12-year medians are in close agreement with the measured values for the N loss and 

Table 7. Observed and simulated annual environmental variables summary statistics for the 
1976-1987 validation period. 

Observed Simulated 

Watershed Variables Median MAD Median MAD 
f r 

N03-N runoff (kg/ha) 1.6 0.8 2.3 1.2 +43.8 0.42 

2 Leached N03-N (kg/ha) 8.0 5.9 7.3 6.8 -8.8 0.35 

Soil erosion (Mg/ha) 11.7" 15.3" 58.8'= 00
 
n
 

_d 
-

Crop yield (Mg/ha) 7.4 2.1 7.7 0.5 +4.1 0.30 

N03-N runoff (kg/ha) 2.7 1.8 2.7 1.4 0.0 0.36 

J Leached N03-N (kg/ha) 32.2 25.3 33.7 36.8 +4.7 0.69 

Soil erosion (Mg/ha) 1.1" 1.4" 3.6= 1.5'= 
- -

Crop yield (Mg/ha) 7.9 0.5 7.8 0.8 -1.3 0.29 

^Percent error = (simulated-observed)/observedx 100. 

""Observed soil erosion measured at headcut. 

•^Simulated soil erosion at the source of watershed. 

''Not feasible for direct comparison. 
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crop yield variables. However, the Watershed 2 surface runoff N loss was overpredicted by 

about 44%. The r values are generally weak; only the predicted Watershed 3 N leaching 

indicators explain greater than 50% of the annual variability. 

Median erosion rates of 58.8 and 3.6 Mg/ha were predicted for Watersheds 2 and 3 

(Table 7), which clearly reflect the effect of the different tillage systems used for each 

watershed. As expected, these simulated erosion rates were higher than those measured at the 

headcuts, due to the sediment deposition that would occur across the grassed waterways 

between the bottom of the slopes and the gullies. Based on these median estimates, 

approximately 20 to 30 % of the predicted sediment loss would actually be transported to the 

gully headcuts. Confirmation of these predicted losses are not possible, for reasons 

previously stated. 

The calibrated model accurately captured the effects of ridge tillage, predicting less soil 

erosion and greater N leaching for Watershed 3 relative to Watershed 2. However, the 

median predicted crop yields were essentially identical rather than reflecting the 0.5 t/ha 

difference harvested over the period. Yields harvested from the US DA Watersheds I and 4 

are similar to those measured for Watershed 3. However, a greater coefficient of variation 

has been observed for the Watershed 2 yields for unexplained reasons. Thus it is possible 

that specific soil or other conditions exist in Watershed 2 that affect crop yields but were not 

accounted for in our parameterization of EPIC. 

Graphical time series comparisons between the predicted and measured annual levels 

of N loss in leaching and surface runoff are shown in Figures 2 and 3. The model's ability to 

capture the N leaching trends (Figure 2) was mixed for both watersheds, in part due to the 

issues of the water movement lag-time previously discussed. It is clearly shown from the 

Figures that greater N leaching occurred at Watershed 3 under no-till treatment compare to 

Watershed 2 for the same year. The large deviations between observed and simulated N 

leaching were seen in 1982 and 1986 at both Watersheds, which mainly occurred due to the 

trends of model errors for seepage flows that detected during wetter years and driest years. 

The predicted surface runoff N losses for Watershed 2 followed the observed annual 

variations reasonably well, although general overprediction is obvious. Less consistent 
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Figure 2. Observed and simulated annual leached NO3-N for (a) Watersheds 2 and (b) 
Watershed 3 during the validation period. 
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Figure 3. Observed and simulated annual NO3-N runoff loss for (a) Watershed 2 and 

(b) Watershed 3 during the validation period. 



www.manaraa.com

149 

tracking by EPIC is shown for the Watershed 3 surface runoff N losses, particularly at the 

start and finish of the simulation period. 

The time series plots of crop yields in Figure 4 clearly shows that EPIC missed the 

measured yield variability for both watersheds. Kiniry et al. (1995), Toure et al. (1994), and 

Moulin and Beckie (1993) also found similar results with EPIC; i.e., generally good 

agreement between long-term and predicted yields but inaccurate reflection of year-to-year 

yield variability. 

Goodness-of-fit statistics are listed in Table 8 for the N loss and Crop yield indicators. 

The majority of the statistics satisfy the pre-established criterion, with the main exceptions 

being N loss in surface runoff for Watershed 2. The negative value of REF for the Watershed 

2 N surface runoff indicates that the model-predicted N runoff amounts are worse than 

simply using the measured median values. 

Table 8. Non-parametric model evaluation statistics for the simulated environmental 
variables for the 1976-87 validation period. 

Watershed 2 Watershed 3 

State MdAE' REF'' MdAE REF 

Variables (0.0)" (1.0) (0.0) (1.0) 

N03-N runoff 52.07" -0.50'' 25.32 0.44 

N03-N leaching 39.45 Q2V^ 32.69 0.38 

Crop yield 15.65 0.38 8.18 0.32 

"Normalized median absolute error. 

••Robust modeling efficiency. 

'^Optimum value. 

•"Underlined values are outside of target criteria. 
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Figure 4. Observed and simulated annual crop yield for (a) Watersheds 2 and (b) Watershed 3 
during the validation period. 
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Summary and Conclusions 

Calibration of the hydrologic balance in EPIC was performed for 1988-94 for both 

Watersheds 2 and 3 at the USDA Deep Loess Research Station near Treynor, Iowa. The 

calibration process relied on adjusting the runoff curve number (CN2) for Watershed 3, to 

adequately reflect the impacts of ridge tillage. Recent versions of EPIC incorporate an 

alternative method of partitioning precipitation between surface runoff and precipitation, 

based on the theory originzilly proposed by Green and Ampt (1911), that might provide a 

more physically-based method for estimating surface runoff. EPIC could also be potentially 

enhanced by including the ability to more directly simulate ridge tillage in the model, rather 

than relying on the more empirical CN2 approach used here. Nevertheless, the CN2 

adjustment procedure resulted in a successful calibration of the model. 

The calibrated model captured the long-term trends (means, medians, and percent 

errors) for the hydrologic and environmental indicators during the 1976-87 vedidation period. 

The large differences observed in soil erosion and nutrient leaching between the two 

watersheds were clearly reflected in the model output. Overprediction of N loss in surface 

runoff by more than 40% for Watershed 2 was the weakest model response. However, the 

corresponding estimated surface N runoff loss was greater for Watershed 3, mirroring the 

general observed trends between the two watersheds. Overall, the output shows that EPIC 

was able to replicate the long-term relative differences between the two tillage systems, 

which is the major emphasis in applying the model within many integrated systems including 

RAPS. The results also strengthen the application of EPIC within the Loess Hills region 

(MLRA 107), which the watersheds represent. 

The r^ and goodness-of-fit statistics, and graphical comparisons, revealed that EPIC 

was weaker at capturing the inter-armual variation that was observed for both watersheds. 

This was likely due in part to simulating the watershed in a homogeneous manner, which 

ignored landscape slope complexities and lag-time in discharge of seepage flow. Despite this 

fact, it seems clear that EPIC will miss much of the inherent variability in crop yields and 

other indicators, based on the results reported here, by Toure et al. (1994), and others. Thus 
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the model should be used cautiously for risk and other analyses that require reliance on 

simulated variability, especially on an event basis. 

The results presented here confirm earlier studies by Rawls et al. (1980) and Rawls and 

Richardson (1983) that standard tabulated CN2 values (Mockus 1969) should be reduced to 

represent the impacts of residue cover on the partition of precipitation between surface runoff 

and infiltration. The large reduction (19%) required for this study is likely an extreme; 

reductions of 10% or less should be adequate for the majority of conservation tillage systems 

as determined previously by Rawls et al. (1980). The results also underscore the importance 

of ongoing model testing, for guidance in the selection of the most suitable input parameters 

to depict different management systems. 
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CHAPTER 6. USE OF EPIC FOR ASSESSING THE ENVIROP^MENTAL IMPACT 
OF ALTERNATIVE AGRICULTURAL MANAGEMENT SYSTEMS 

A paper to be submitted to the Transactions of the ASAE 

S. W. Chung, P. W. Gassman, R. Gu, and R. S. Kanwar 

Abstract 

Agricultural policy makers are requiring enhanced analytical tools to assess the 

environmental and economic impacts of alternative agricultural management strategies, to 

ensure that reliable policies are implemented. One tool that has been widely used for over a 

decade within agricultural policy analyses is the Erosion Productivity Impact Calculator 

(EPIC) model. EPIC has been tested and validated under a range of conditions; however, 

there is an ongoing need to further test the model to improve its prediction capabilities. In 

this study, EPIC was tested using 3 years of data collected from a field site near Nashua, 

Iowa. The model's performance and reliability was evaluated by assessing its ability to 

replicate the effects of various tillage and crop rotation systems on subsurface flow, nitrogen 

loss, and crop yield. Predicted monthly drain flows and leached nitrogen agreed well with 

observed values and were statistically acceptable for nearly all of the simulated management 

systems. However, there were consistent errors in the EPIC daily predictions, such as 

underpredicting peak flows and nitrogen losses during storm events. The results of paired t-

tests clearly showed that EPIC can replicate the effects of various agricultural management 

alternatives on downward nitrogen movement at the study site. But EPIC showed a limited 

capability to reproduce tillage and crop rotation effects on crop yield, similar to results found 

in several previous studies. Further testing is needed to refine and improve the model's 

performance under conditions similar to those that exist at the Nashua site. 

Introduction 

Agricultural activities are affecting soil and water environments via a complicated 

matrix of hydrologic, geological, meteorological, and agronomic processes. A great number 

of experimental studies have provided essential data and important answers towards 
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understanding these processes, but they are prohibitively costly to perform across all possible 

landscape, weather, management, and cropping system combinations. Therefore, 

mathematical simvilation models such as HSPF (Johanson et al. 1984), SWRRB (Williams et 

al. 1985), GLEAMS (Leonard et al. 1987), AGNPS (Young et al. 1987), SWAT (Arnold et 

al. 1993) have been developed to interpret these processes and predict the environmental 

outcomes of alternative agricultural management and cropping systems. These mathematical 

models are playing increasingly important roles within the context of integrated modeling 

systems, which are designed to provide policy makers with both economic and environmental 

outcomes of proposed agricultural policies. 

One of the most widely used simulation models for agricultural policy analysis is the 

Erosion Productivity Impact Calculator (EPIC) model, originally developed by the United 

States Department of Agriculture (Williams 1990; Williams 1995). EPIC has been applied 

for studies ranging from farm-level to multiple states, such as the 1985 Resources 

Conservation Act analysis. The model was originally designed to simulate the impacts of 

erosion upon soil productivity. However, current versions of EPIC have incorporated many 

advanced functions related to water quality and global climate/CO^ change, which has 

resulted in the model being renamed to Environmental Policy Integrated Climate (Williams 

et al. 1996). Environmental indicators that can be output from EPIC include the transport and 

fate of nutrients from fertilizer and manure applications on eroded sediment, in runoff, and in 

leached water, pesticide leaching and runoff, the impact of atmospheric carbon levels on crop 

yield, sequestration of carbon in soil, and erosion losses due to water and wind. 

The EPIC model has been adopted within the Resources and Agricultural Police System 

(RAPS), an integrated modeling system designed to evaluate the economic and 

environmental impacts of agricultural polices for the North Central U.S. (Babcock et al. 

1997). The main use of EPIC within RAPS is to provide nitrogen loss, soil erosion, and crop 

production indicators in response to variations in tillage treatment and crop rotation. 

Therefore, an important aspect that may limit the use of the model in the RAPS is whether 

EPIC can realistically replicate the impact of different agricultural management systems on 

the environment. Although EPIC has been tested and validated for several specific sites, there 
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is further need to test the model under a wider range of conditions that occur within the 

RAPS study region. 

The purpose of this study is to examine the performance and reliability of the EPIC 

model in simulating subsurface drain flow, nitrogen loss, and crop yield in response to 

various tillage and crop rotation systems. A total of six management systems were simulated 

in this study, that included combinations of three different tillage systems, (moldboard plow, 

chisel plow, and no-till) and two crop rotation systems (continuous com and soybean-com). 

Daily field data were used to test and judge the model performance including tile drain flow 

and leached nitrate nitrogen (no3-N) collected during 1990 - 1992 (Kanwar et al., 1993). 

Materials and Methods 

Field Description 

The study site is located at Iowa State University's Northeast Research Center, Nashua, 

lA. Field experiments have been conducted at this site since the early 1980s to evaluate the 

effects of tillage and crop rotation systems on the quantity and quality of groundwater 

(Kanwar et al., 1993). The site has 36 0.4-ha experimental plots with different tillage and 

crop rotation systems. The subsurface tile drainage systems were installed in 1979 in the 

middle of each plot about 1.2 meters deep at a spacing of 28.5 meters to improve the subsoil 

drainage. Twelve combinations of four different tillage treatments, moldboard plow (MB), 

chisel plow (CP), ridge-tillage (RT) and no-tillage (NT), and three crop rotations, continuous 

com (CCR), com-soybean (CSR), and soybean-com (SCR), were studied across the 36 plots. 

Each tillage and crop rotation combination was replicated three times for each of the 12 

different management cases. 

In the present study, EPIC was tested with data collected firom plots managed with 

MB, CP, and NT in combination with CCR and SCR. The 3-year field monitoring study 

revealed that these different tillage and cropping systems definitely affected the quantity of 

subsurface tile drain flow and the corresponding no3-N loss (Kanwar et al., 1993). On 

average, greater tile drainage flows were observed under NT compared to MB, and from 

CCR relative to SCR. The no3-N concentrations in tile water were greater under the MB 
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treatment than the conservation tillage systems (CP and NT). But the total no3-N losses 

(kg/ha) through the tile drains were much greater from the NT and CP systems compared to 

MB, because of greater drainage flows. The EPIC predicted annual, monthly, and daily 

values were compared with observed values using various statistics and graphical displays to 

eveiluate the model performance in replicating these tillage and crop rotation effects. 

Input Data 

The soil at this site is predominantly a Kenyon silty-clay loam soil with 3 to 4 % 

organic matter, which was assumed representative of all plots for the EPIC simulations. A 

soil profile depth of 1.2 m was assumed, that was divided into 6 soil layers. The average 

slope of 3.5% was obtained from the EPIC soil database and input for each simulation. Up to 

20 physical and chemical soil properties for each soil layer can be input into EPIC. The main 

soil properties obtained from the EPIC soil database and Singh and Kanwar (1995) are shown 

in Table 1. 

EPIC requires daily climatic input data including precipitation, maximimi and 

minimum air temperatures, solar radiation, average relative humidity, and average wind 

speed. Field measurements at the study site were available for all of these climatic inputs 

except wind speed and part of the precipitation record: January, February, and December for 

1990 - 1992. The omitted daily precipitation and wind speed data were generated by the 

EPIC model using monthly weather statistics for Osage, Iowa, which is the nearest climatic 

station available in the EPIC weather generator database. The Penman-Monteith 

evapotranspiration method was used to estimate the potential evaporation. Daily values of 

soil water evaporation and plant transpiration were then computed as a function of potential 

evaporation and leaf area index in the model (William 1995). 

The EPIC management component requires information about different operations such 

as planting, fertilizer applications, tillage, and harvesting. Operation dates, fertilizer 

amounts, and other pertinent management information were obtained from Kanwar et al. 

(1993). Equivalent mineral nitrogen (N) application rates of 200 kg-N/ha to com within CCR 

and 168 kg-N/ha to com within SCR were simulated; nitrogen applications were not 

simulated for soybean. 
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Table 1. Soil properties used in the simulations for Nashua site, Iowa. 

Soil layer number 

Soil property 1 2 3 4 5 6 

Lower boundary (m) 0.01 0.41 0.50 0.69 0.89 1.20 

Bulk Density (Mg/m^) 1.32 1.32 1.55 1.60 1.65 1.70 

Wilting point (mVm^) 0.14 0.14 0.15 0.15 0.15 0.15 

Field capacity (mVm^) 0.30 0.30 0.26 0.28 0.28 0.26 

Sand content (%) 38 41 42 43 44 44 

Silt content (%) 42 34 32 30 28 31 

pH 6.5 6.5 6.2 6.2 6.2 6.2 

Organic carbon (%) 2.0 2.0 0.6 0.4 0.3 0.2 

Coarse fragment content (%) 1.4 1.4 7.6 7.6 7.6 7.6 
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Simulation Mettiodology 

EPIC directly simulates tillage practice effects by incorporating nutrients and crop 

residues below the soil surface, changes in the soil bulk density, and conversion of standing 

residue to flat residue. The impact of tillage on surface runoff has to be indirectly accounted 

for, by adjusting the runoff curve numbers to reflect crop residue amounts as discussed 

below. 

The USDA Soil Conservation Service (SCS) curve number method (Mockus 1969) was 

used to partition precipitation between surface runoff volume and infiltration. Conservation 

tillage effects were taken into account by adjusting the runoff curve number values for 

antecedent moisture condition 2 (CN2), the average moisture conditions for the preceding 

five day period. These CN2 values represent conventional tillage and have to be reduced to 

reflect the impacts of conservation tillage (Rawls et al 1980; Rawls and Richardson 1983; 

Chung et al. 1998). The crop residue left on the surface was used as the independent variable 

to estimate the percent reduction of CN2 for the chisel plow and no-till treatments. The 

residue levels were obtained from Singh and Kanwar (1995), who estimated them from crop 

yield and percent cover using the residue amount estimation technique of Wischmeier and 

Smith (1978). A CN2 value of 81 was chosen for MB, reflecting row crops with straight row 

and hydrologic soil group B (Mockus 1969). This curve number value was reduced about 6% 

for CP (CN2 = 76) and 11% for NT (CN2 = 72), based on the estimated amounts of surface 

crop residues. 

Nitrogen transport and transformation processes simulated in EPIC include runoff of 

NOj-N, organic-N transport by sediment, NOj-N leaching, upward no3-N movement by soil 

water evaporation, denitrification, immobilization, mineralization, crop uptake, volatilization 

of NHj, and fixation (Williams 1995). All of these processes were taken into account for both 

the CCR and SCR systems where appropriate (leguminous N-fixation was only simulated for 

soybean within the SCR system). N-fixation occurs when nitrogen gas (Nj) is transformed 

into a chemical compound that can be used by a crop. Fixation of nitrogen in cropland is 

predominantly accomplished by specialized microorganisms and the interaction between 

such microorganisms and plants. The EPIC N-fixation subroutine was developed to simulate 
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animal legumes in which fixation is sensitive to early nodule development, nodule 

senescence late in growth, soil water in the top 30 cm, and soil mineral N in the root zone 

(Lawn and Bum, 1974; Patterson and Larue, 1983; Bouniols et al., 1991; Williams 1995). An 

empirical parameter, FARM (7), can be adjusted to take into account the sensitivity of these 

environmental factors on N-fixation. In this study, FARM (7) was set to 1.0 for soybean to 

fully account for these environmental factors. 

The daily N-fixation was computed as a firaction of daily plant N uptake for soybean 

using the following relationship: 

WFX, = FXR, • UNi, WFX < 6.0 (1) 

where WFX is the amount of N-fixation in kg/ha/day, FXR is the fiaction of uptake for day i, 

and UN is the daily plant N uptake rate in kg/ha/day. The FXR value was estimated as a 

function of plant growth stage, soil water content, and soil no3-N amount. The soil water 

content factor reduces N-fixation when the water content at the top 30 cm is less than 85% of 

field capacity. The amount of NOj-N in the root zone reduces N-fixation when it is greater 

than 100 kg/ha /m and prohibits N-fixation when it is greater than 300 kg/ha/m. 

Drain Flow Routing for Daily Comparisons 

EPIC operates on a daily time step and is driven by daily climatic inputs. However, 

daily comparisons are difficult because the predicted drainage flows are the flows which 

move downward below the root zone, while the field data were measured at the outlet of the 

tile line. Therefore, flow routing from the bottom of root zone to the outlet of tile line is 

required to indirectly compare the EPIC predicted daily drainage flows and nitrogen losses 

with the observed values. 

The tile line was assumed to act as a storage reservoir that leads a lagged and damped 

peak flow at the outlet during storm events. A continuity equation was used to rout the 

drainage flows. The continuity equation for the inflow I, outflow O, and the rate of storage 

change S, in the tile line was formulated as following; 



www.manaraa.com

164 

dt 

where the difference between the drainage inflow from the bottom of the root zone and 

outflow out of the tile line outlet is equal to the rate of water volume change stored within the 

system. Equation (2) was approximated using the forward finite-difference method: 

^ ^  =  ̂ '  +  r ^ V ^ O '  +  O ' * ' )  
At r r 

where At is the routing time interval and the superscripts i and i+1 denote the variables at the 

begirming and ending of the routing interval. By rearranging the known and vmknown terms, 

equation (3) was expressed as: 

r , r . ,2s:_Q,^o„,^2s:l  (4) 
At At 

The storage term in (4) can be expressed as a function of outflow S = kO,  where k  is the 

travel time of drainage flow, provided that the water level in the tile line is horizontal to 

ensure removal of dynamic effects (Chow et al. 1988). By substituting the S terms into ( 3), 

the flow at the end of tile line was computed using the following solution: 

= (-AL_)(ii +1-') + 0' 
M+2k At+2k 

This solution was used to route the EPIC generated daily subsurface drain flows (I' and I 

from the bottom of the root zone to tile line outlet by assuming that the initial condition for 

0''° is equal to zero. 

Model Evaluation Methods 

Statistical analyses were conducted using the SAS software system (SAS Inst. Inc. 

1989) to compare the observed and simulated values and theu- monthly and daily variations, 

and to evaluate EPIC's reliability in replicating the effects of various tillage and cropping 

systems. The statistics used for comparing the observed and simulated values, and their 
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variations, include percent error (E), modeling efficiency (EF), r-square (r^), and a paired t-

test between observed and simulated values. The paired t-test was also conducted to evaluate 

reliability of EPIC in replicating the effects of various tillage and cropping systems. The 

formulas of these statistics are: 

E = ~ X 100 
O ,  (6) 

EF = [±{0,  -  O J-X(P. - 0. f] /±iO,  -  OJ 
1=1 i=.i i=i '' 

("Sq'p.' 
'=! /«! /»I _ C^) 

r '  = 

where Oi and P/ are the observed and predicted values at each comparison point i, n is the 

number of observed and predicted values that are being compared, and is the mean of the 

observed values. 

The E value was mainly used to assess the error associated with the long-term (annual) 

performance of the EPIC model. The EF describes the proportion of the variance, of the 

observed values over time, accounted for by the EPIC model, where the variance is relative to 

the mean value of the observed data (Nash and SutclifFe, 1970; Martin et al. 1993). The EF 

can vary from 1 to negative infinity; an EF value of I indicates that the model predictions are 

exactly the same as the observed values. If EF is equal to or less than 0, it means that the 

observed mean value is as good an overall predictor as the model (or a better predictor of 

observed values than the model). The r^ value indicates how accurately the model tracks the 

variation of observed values. The r value can range from 0 to 1, where r^ value of 1 indicates 

that the model can completely explain the variations of the observed indicators. The main 

difference between the EF and the r^ value is that the latter can not interpret the model 

performance in replicating individual observed values, while the EF can. 
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The null hypothesis (HJ of the paired t-test between the observed and simulated 

monthly values was -ji, = 0, in which is the difference between the mean values of 

the observed ({ij and simulated (jij indicators. The alternative hypothesis (H^) was 0. 

Thus, the acceptance of the null hypothesis indicates that the EPIC predicted mean value is 

statistically same as the observed one. The Hg was rejected when the significance value level 

(P-V2due) was less than half of a specific level of significance (ot/2). The level of significance 

a = 0.05 (or 95% confidence level) was used in this study. The null hypothesis (HJ for the 

paired t-test among different management systems was -|^B = 0, in which is the 

difference between the mean values of management alternatives A and B (^IQ). The 

altemanve hypothesis (H^ is jij = "f^B ^ Therefore, rejection of the null hypothesis 

means that management A results in greater nitrogen leaching losses (or whatever 

environmental indicator is of interest) than management B. The was rejected when the P-

value was less than the level of significance (a = 0.05). 

Explicit standards for evaluating model performance with statistics such as the EF 

and r^ are not well-established, because the judgment of model results is highly dependent on 

the purpose of the model application. For this study, the criteria set by Chung et al. (1998) 

were used to judge if the model results were satisfactory; i.e., EF > 0.3 and r^ > 0.5. 

Results and Discussion 

Subsurface Drain Flow 

For the comparisons of model results with observed data, it was assumed that the 

measurements at the tile line outlets were identical to the EPIC predicted subsurface flows 

that move downward below the root zone (1.2 m in this study). This is a reasonable 

assumption for the monthly and annual comparisons because the experimental plots (0.4 ha) 

and the tile line spacings (28.5 m) are small enough to carry the entire flow from the bottom 

of root zone to the tile line outlet within several days. Thus the effects of the tile line such as 

lagging and damping of peak flows were ignored. The daily values are, however, indirectly 

compared considering these effects using the simple flow routing technique. 
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Table 2 shows the observed and simulated annual subsurface drain flows for the 

different tillage and crop rotation systems. The E values (Table 2) mdicate the percent errors 

between the observed and simulated annual mean values of subsurface drain flow. Although 

several large deviations were seen between the simulated and observed values for drainage 

flow for the 1991 NT, 1992 CP, and 1992 NT systems, the overall model performance was 

satisfactory under CCR. The simulated 3-year average drain flows for ail till^e systems 

were especially consistent with the observed values, with E < 10%. However, larger 

deviations resulted for all simulated tillage treatments under the SCR system, with E values 

greater than 10% for the predicted drainage flows under CP and NT. In 1991 and 1992, the 

observed data indicates that the SCR tillage effects on drainage flow were not significant, but 

the model results showed the same tillage effects as observed in the CCR system. The results 

suggest that the subsurface flow mechanisms and pathways are different for SCR relative to 

CCR, and that these were not accurately simulated by the model. 

Time series comparisons between the observed and simulated monthly subsurface drain 

flows are shown in Figure 1. The EPIC predicted values followed the observed trends 

reasonably well under all management systems, although several deviations were detected 

during the peak time periods. The EPIC model considerably overpredicted the peak flows in 

July 1990 and April through June of 1992, but underpredicted during April through May of 

1991. Overall, the EPIC model responded well to the precipitation patterns of the study area; 

i.e., frequent heavy rainfall events during the late spring and summer. 

The EPIC predicted daily drain flows for 1990 NT under CCR were compared with 

daily observed values (Figure 2), in order to further assess the model performance. This case 

was selected because of the small deviations between observed and simulated total annual 

drainage flow and nitrogen loss. A satisfactory r^ value (0.63) was obtained between 

observed and simulated daily drain flows, indicating that the daily variations in the observed 

drainage flows were reasonably explained by the model. However, the EPIC predicted values 

contained abundant errors and missed peak drainage flows at several points. The model errors 

may be due in part to the daily time step and the lack of a preferential flow component in the 

model. Preferential flow can occur through macropores during heavy storm events resulting 
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Table 2. Observed and simulated annual total subsurface drain flows (mm). 

Rotation Year Precipitation Observed Simulated 

(mm) MB" CP" NT MB CP NT 

CCR'' 1990 1235.3 89.8 183.0 274.5 105.8 183.9 280.3 

1991 994.6 180.8 271.2 329.2 182.8 228.1 262.7 

1992 826.1 98.5 115.8 132.2 113.1 164.7 205.7 

Mean 1018.7 123.0 190.0 245.3 133.9 

(8.9) 

192.2 

(1.2) 

249.6 

(1.7) 

SCR' 1990 1235.3 106.7 156.8 169.3 125.6 234.3 233.9 

1991 994.6 265.3 317.9 284.9 152.3 201.4 198.7 

1992 826.1 71.8 61.7 43.8 129.0 181.1 161.6 

Mean 

E 

1018.7 147.9 178.8 166.0 135.6 

(-8.3) 

205.6 

(14.9) 

198.1 

(19.3) 

'Moldboard plow. 

''Chisel plow. 

"No-till. 

''Continuous com rotation. 

"Com and soybeein rotation. 

Percent error = (simulated-observed)/observed x 100. 
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ved and simulated monthly subsurface drain flows under (a) moldboard, (b) 
plow, and (c) no-till systems for 1990-1992 at Nashua, Iowa. 
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Figure 2. Observed and simulated daily subsurface drain flows under no-till and continuous corn rotation for 
1990 at Nashua, Iowa. 
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in quick movement of flow and nutrients from the soil surface to the bottom of root zone 

(Kanwar et al 1993; Singh and Kanwar, 1995), a process that can not be simulated in EPIC. 

Nitrogen Loss 

Observed and simulated total armual nitrogen losses via drainage flow under the various 

tillage and crop rotation systems are listed in Table 3. The model performance varied greatly 

between the different simulated management systems. Except for the first year, the deviations 

between the observed and predicted values were significant for all tillage plots under CCR. 

However, the predicted CP and NT values showed much higher nitrogen losses relative to 

MB, consistent with the observed values. The model considerably over estimated the 

nitrogen losses under all tillage treatments in 1992. In that year, EPIC predicted greater 

nitrogen losses under CP and NT treatments than vmder MB, although the measured data 

showed little difference among treatments. For SCR, the model predicted the armual leached 

nitrogen more accurately than the previously discussed drainage flow. In general, the 

predicted 3-years average nitrogen losses vmder all management systems were within roughly 

5 percent of the corresponding measured values, except when NT was simulated in 

combination with SCR (Table 3). This indicates that EPIC is able to replicate the long-term 

water and nitrate leaching trends for these systems. 

Figure 3 shows the time series comparisons between the observed and simulated 

monthly values of leached nitrogen. As expected from the drain flow comparisons, the 

predicted values followed the observed trends reasonably well although several deviations 

were obvious during the peak leaching periods across ail management alternatives. A great 

amount of leached nitrogen was lost in 1990 due to the high precipitation that occurred 

following two consecutive years of drought (1988 and 1989), which was captured by the 

model. The nitrogen that accumulated within the soil profile during the drought years was 

washed out via the abundant subsurface drainage flows during the heavy storm events in 

1990. EPIC considerably overpredicted the nitrogen losses during the early spring (March 

and April) of 1992 at all tillage plots under the CCR, and in 1990 NT under SCR. This 

implies that the fate and transport of nitrogen in this site may be more complicated than the 

theory used in the model. 
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Table 3. Observed and simulated annual total leached nitrogen (kg/ha). 

Rotation Year Precipitation Observed Simulated 

(mm) MB" CP" NP MB CP NT 

CCR" 1990 1235.3 58.1 100.0 107.2 57.6 101.6 106.7 

1991 994.6 62.7 76.0 61.7 50.9 56.4 43.3 

1992 826.1 16.6 17.0 14.9 27.1 36.6 34.9 

Mean 1018.7 45.8 64.3 61.2 45.2 64.9 61.6 

E (-1.3/ (0.8) (0.6) 

SCR' 1990 1235.3 41.1 50.8 31.7 36.3 57.1 58.5 

1991 994.6 41.0 46.0 31.9 51.6 43.5 41.1 

1992 826.1 10.2 7.3 4.4 10.0 6.5 5.0 

Mean 1018.7 30.7 34.7 22.7 32.5 35.7 34.9 

E (5.5) (2.8) (58.3) 

'Moldboard plow. 

"Chisel plow. 

=No-till. 

•"Continuous com rotation. 

'Com and soybean rotation. 

Percent error = (simulated-observed)/observed x 100. 
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Figure 3. Observed and simulated monthly leached no3-N under (a) moldboard, (b) chisel 
plow, and (c) no-till systems for 1990-1992 at Nashua, Iowa. 
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During and after the two consecutive wet years of 1990 and 1991, an anoxic condition 

may have developed within the soil profile due to a high soil water content. If so, it is 

possible that some of the remaining nitrogen denitrified via consumption by heterotrophic 

bacteria. If this scenario is correct, it appears that the empirical equation used in EPIC for 

simulating denitrification failed to capture this process. Whether this occurred or not, it is 

clear that the overprediction of nitrogen losses during this period are directly associated with 

the overpredicted drainage flows. 

The predicted daily values of nitrogen loss for 1990 NT under CCR are compared with 

the observed values in Figure 4. A relatively weaker r^ (0.51) was predicted for the leached 

nitrogen compared to the subsurface drain flows. As detected for the daily drain flow 

comparisons, the model was not capable of capturing the peak nitrogen losses for several 

storm events. This again indicates that nitrogen may have moved preferentially through the 

root zone during heavy storm events. The trends of both observed and simulated daily 

leached nitrogen values (Figure 4) are consistent with the corresponding subsurface drain 

flows (Figiire 2), confirming that the fate and transport of nitrogen is strongly correlated with 

water flow. 

Statistical Analyses 

Results of the EF, r^, and P-value evaluations are presented in Table 4. The statistics are 

based on 36 observations of monthly simulation output (n=36). Strong modeling efficiencies 

are shown in Table 4 for every combination of cropping system, management, and drainage 

flow or leached nitrogen, except for nitrogen leached under no-till. Overall, more than 60 and 

50 percent of the variances in the observed monthly drain flows and leached nitrogen were 

accounted for by the EPIC model, relative to the mean value of observed data. The negative 

EF value for the leached nitrogen under no-tilled SCR indicates that the observed mean value 

is a better predictor of observed values than the model. The r^ values for the subsurface drain 

flows and leached nitrogen were satisfactory under all combinations of tillage and cropping 

systems. The r^ values ranged from 0.67 to 0.89 for the tile drain flows and 0.60 to 0.83 for 

the leached nitrogen. The slightly lower nitrogen loss r^ values can likely be attributed to 

errors in simulating complicated nitrogen transformation processes such as immobilization. 
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Figure 4. Observed and simulated daily NOj-N losses under no-till and continuous corn rotation for 1990 at 

Nashua, Iowa. 
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Table 4. The statistics used to evaluate the performance of EPIC model. 

Rotation Tillage Drain flow Leached nitrogen 

EF r^ P-value'^ EF P-value 

MB' 0.85 0.89 0.404 0.73 0.75 0.607 

CP" 0.84 0.85 0.909 0.69 0.75 0.403 

isrr 0.76 0.78 0.880 0.49 0.60 0.296 

MB 0.70 0.70 0.933 0.58 0.83 0.751 

CP 0.63 0.67 0.959 0.67 0.77 0.824 

NT 0.64 0.69 0.975 -0.08" 0.80 0.008 

'Moldboard plow. 

"Chisel plow. 

=No-till. 

''Continuous com rotation. 

"Com and soybean rotation. 

the population mean of observed values is identical to that of predicted values; is 

rejected if P-value is less than the level of significance (a/2 = 0.025). 

Underlined value is outside of target criteria. 
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nitrification, denitrification, and fixation. The EPIC model simulates these processes using 

empirical equations developed on the basis of field experiments; however, it is difficult to 

assess modeling error of these processes due to the insufficient field measurements. The 

paired t-test (p-values) results indicate that the simulated drain flows and leached nitrogen 

agree well with observed values. Thus the null hypothesis, that the population mean of 

observed values is identical to that of the predicted values, was accepted for all management 

alternatives at significance level of a = 0.05, except SCR managed in tandem with NT. 

In summary, the EPIC estimates were statistically acceptable for all management 

systems, except for nitrogen leaching EF and p-values computed for SCR managed with no-

till. This resulted from considerable overprediction of nitrate leaching during the period of 

May - July 1990. However, the predicted nitrogen losses followed observed trends well as 

evidenced by the value given in Table 4. 

EPIC Reliability for Tillage Effects 

Table 5 shows the results of paired t-tests (p-values) that were performed to assess the 

reliability of EPIC to replicate the effects of various tillage treatments on the subsurface drain 

flow and leached nitrogen. The null hypothesis, that the population mean of an indicator 

under tillage A is equal to the corresponding value for tillage B, was rejected if the p-value is 

less than the level of significance (a = 0.05). 

A p-value less than 0.05 resulted for CP and NT relative to MB when cropped with 

CCR and between CP and MB used in tandem with SCR, for both the observed and 

simulated drainage flows. This means that greater tile drain flows occurred in the field for 

these conservation tillage and cropping system combinations as compared to MB, and that 

the EPIC model replicated these tillage effects. However, the model failed to replicate the 

observed tillage effect on the drainage flows between NT and MB under SCR. 

The null hypothesis that equivalent N leaching would occur for CP versus MB was 

rejected for CCR but accepted for SCR for both the measured and simulated leached nitrogen 

results. Thus EPIC correctly predicted that nitrogen leaching losses increased due to CP, 

relative to MB, under CCR but not under SCR. Both the observed and simulated nitrogen 

loss results accepted the null hypothesis that equivalent N leaching would occur under NT 
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Table 5. The results of t-test used to assess the model reliability for tillage effects. 

Variable Rotation Null hypothesis Observed" Simulated" Comparison'' 

Drain flow CCR" M^d ~ M-cp " M^mb ~ 0 0.0011 0.0001 0 

M^d ~ ^nt " ~ 0 0.0002 0.0000 0 

SCR" ^d ~ m^cp " m'mb ~ ® 0.0116 0.0001 0 

M'd ~ ^nt • M'mb ~ 0 0.1283 0.0006 X 

N loss CCR M-d ~ ^^cp " M^mb ~ 0 0.0121 0.0155 0 

Md ~ Mnt " M'mb ~ ® 0.0597 0.0668 O 

SCR Md ~ Mcp " Mmb ~ 0 0.0737 0.1965 0 

Md ~ Mmb " Mnt~ ^ 0.0001 0.3002 X 

'Continuous com rotation 

•"Com and soybean rotation 

T-value; HQ: " M'B ~ 0' which means the population mean of an indicator under 

management alternative A is equivalent to that under management altemative B; is " 

|IB> 0; Ho is rejected if P-value is less than the level of significance (a = 0.05). 

""If the t-test results are same between observation and simulation, mark O, otherwise X. 
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and MB for CCR. This same comparison was rejected under SCR measured conditions but 

accepted by EPIC. These results indicate that tillage effects on nitrogen loss vary according 

to cropping system, and that EPIC captured these effects except for the SCR NT and MB 

conditions. As a whole, the EPIC model adequately replicated the impacts of various tillage 

systems on the drainage flows and nitrogen losses. 

The crop yield comparisons in Figure 5 reveal that EPIC failed to capture the observed 

yield variability due to tillage effects in 1990 and 1991 CCR and 1991 SCR. Although it is 

difficult to judge the model reliability using only a 3-year data set, the model seems to have a 

limited capability to reproduce the effects of different tillage treatments on crop jdeld. Chung 

et al. (1998) also found that EPIC's yield estimates were not sensitive to tillage for two 

watersheds in southwest Iowa. In general, EPIC yield estimates are consistent with long-term 

measured means, but fail to reflect year-to-year yield variability (Martin et al. 1993; Moulin 

and Beckie 1993; Kiniry et al. 1995). 

EPIC Reliability for Crop Rotation EfTects 

Paired t-test results used to assess the model reliability for crop rotation effects are 

presented in Table 6. The null hypothesis, that the population mean of an indicator under 

CCR is equal to the mean under SCR, is rejected if the p-value is less than the level of 

significance (a = 0.05). 

The p-values showed good agreement between the observed and simulated results 

except for the MB drainage flows. The observed drain flows indicated that greater drainage 

flows occurred due to SCR relative to CCR, but identical values were predicted by the EPIC. 

For CP, both the observed and simulated results indicate no difference between SCR and 

CCR for drain flows, but greater nitrogen loss occurred under CCR than SCR. This is 

because of greater application rate of nitrogen within CCR. The simulated and measured 

outcomes across all three tillage treatments rejected the null hypothesis for nitrogen loss, 

indicating that greater nitrogen losses would result from CCR relative to SCR. 

The yield comparisons (Figirre 5) between the CCR and the SCR systems in 1991 

reveal that EPIC was not able to reproduce the crop rotation effect on com yields at this site. 

The model predicted a uniform crop yield regardless of cropping system, but the measured 
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Figure 5. Observed and simulated crop yields under (a) continuous com and (b) soybean-
rotation systems for 1990-1992 at Nashua, Iowa. 
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Table 6. The results of t-test used to assess the model reliability for crop rotation effects. 

Variable Tillage Null hypothesis Observed'' Simulated** Comparison' 

Drain flow MB' M'd ~ PsCR • l^CCR ~ 0 0.0418 0.4376 X 

CP" M-d ~ ^CCR " P-SCR ~ ® 0.1790 0.1639 0 

Nr= M^d ~ MCCR " M^SCR ~ ® 0.0000 0.0000 0 

N loss MB J^d ~ ^CCR " MSCR ~ ® 0.0061 0.0433 O 

CP M'd ~ I^CCR " M-SCR ~ ® 0.0006 0.0084 O 

NT M-d ~ I^CCR " M^SCR ~ ® 0.0008 0.0115 0 

'Moldboard plow 

"Chisel plow 

=No-till 

''P-value; HQ; - i^b ~ 0' which means the population mean of an indicator under cropping 

system A is equal to that under B; 0' is rejected if P-value is less than the 

level of significance (a = 0.05). 

®If the t-test results are same between observation and simulation, mark O, otherwise X. 
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yields show that SCR com yields exceeded CCR yields by almost 1 Mg/ha in 1991 for the 

conservation tillage systems. 

Summary and Conclusions 

The EPIC was evaluated to test it's ability to replicate measured tile drain flow and 

associated nitrate losses for six alternative management systems over three years for data 

collected at research plots near Nashua, Iowa. The alternative management systems consisted 

of combinations of three tillage treatments (MB, CP, and NT) and two crop rotations (CCR 

and SCR).. 

The statistical tests and graphical displays of the observed and simulated indicators 

revealed that the drain flows and leached nitrogen predicted by EPIC on an armual and 

monthly basis were acceptable for all management systems, except for the estimated nitrogen 

loss under SCR managed with no-till. In general, the EF and r^ values for the drainage flows 

and leached nitrogen were satisfactory under all combinations of tillage and cropping 

systems. The r^ values ranged 0.67-0.89 for the drain flows and 0.60-0.83 for the leached 

nitrogen. However, the predicted daily values contained abundant errors and missed peak 

drainage flows and nitrogen losses during several storm events. Moderately satisfactory r 

values resulted from comparisons of observed and simulated daily values. The daily time step 

and the lack of a preferential flow component were discussed as possible source of errors. 

The paired t-test results among various tillage and crop rotation systems clearly showed 

that the EPIC model was able to replicate the effects of variation in agricultural management 

on the amount of subsurface drain flow and nitrogen loss at thi."^ site. The paired t-test results 

for the tillage and crop rotation effects showed that the observed and simulated results were 

in agreement for 11 out of 14 total tests. However, the EPIC model showed a limited 

capability to replicate the impact of different tillage treatments and crop rotation systems on 

crop yield. The EPIC predicted crop )aelds were not sensitive to the different agricultural 

management systems, in contrast to what has been observed at the site. 

Overall, EPIC proved sensitive to variations in tillage and cropping practices, 

producing satisfactory estimates of drainage flow and nitrate losses for the majority of 
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simulated management systems. The results presented here confirm that EPIC can be used to 

estimate nitrate losses in response to different management systems in integrated modeling 

frameworks such as RAPS, especially for establishing long-term trends for nitrate leaching 

losses. However, clear discrepancies occurred between some model estimates and 

corresponding measured values, such as peak losses for specific storm events and tile 

drainage flow and nitrate losses that occurred under no-tilled SCR. Two potential sources of 

these errors in EPIC include: (1) the lack of a preferential flow component, and (2) nitrogen 

transformation routines that may not adequately reflect all of the processes that occur in the 

field. Further testing and refinement of EPIC is required, both at Nashua (with 1993-96 

measured data) and for other soil, landscape, and climate combinations, to improve the model 

capability to replicate management system impacts. 
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CHAPTER?. GENERAL CONCLUSIONS 

Model Development 

A 2D reservoir toxic submodel was developed using finite difference numerical 

solutions to the laterally integrated hydrodynamics, mass transport, and transformation 

equations. The model is capable of simulating the fate and transport processes of various 

toxic contaminants, including advection and dififiision in the longitudinal and vertical 

directions, sorption and desorption, photolysis, hydrolysis, oxidation, biotransformation, 

volatilization, diffusive exchanges between the bottom sediment and water column, and 

sediment transport and deposition in a reservoir. The important feature of the model is that it 

accounts for the effects of reservoir flow regime on the physico-chemical reaction processes 

in a stratified reservoir. The model can be used to investigate the fate and transport of 

commonly used agricultural chemicals such as herbicides, fimgicides, and insecticides in 

reservoirs. It also can be applied to a intended or existing reservoir for establishing a 

contingent plan to assist in spill control, sampling and remediation, and providing timely 

information for selective water intakes. 

The model was applied to the Shasta Reservoir, California to investigate the effects of 

reservoir flow regime on the persistence and behavior of a spilled toxic compound, methyl 

isothiocyanate (MITC). The model was also calibrated and validated using field data for a 

herbicide, atrazine [2-chioro-4-ethylamino-6-isopropylamino-l,3,5-triazine], collected from 

the Saylorville Reservoir, Iowa. A mass balance model was constructed in the reservoir to 

estimate a time-variable kinetic transformation rate or half-life of atrazine. The 2D reservoir 

toxic model was used to simulate the occurrence, levels, and persistence of peak atrazine 

concentrations, and their temporal and spatial distributions in the reservoir. 

Effects of Flow Regime on the MITC Degradation 

The 2D reservoir toxic model showed a good performance in simulating various 

reservoir flow regimes: plunge flow, underflow, and interflow during the spill period as 

presented through flow velocities, water temperature, and chemical concentrations. The 
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results revealed that in the underflow and interflow regimes the kinetic degradation processes 

of MITC were slow, and that resulted in a long persistence of the chemical during the spill. 

The amount of MITC loss by chemical reactions decreased as the plume plunged into deep 

layers of the reservoir and formed the underflow and interflow due to a reduced volatilization 

rate. The reduction of chemical concentrations was mainly achieved by flow dilution due to 

transport and mixing processes in the early stage of the spill. However, the importance of the 

physico-chemical reaction processes increased with time as the turbulent mixing diminished. 

In the late stage of the spill, the effect of kinetic processes on the persistence of the 

contaminant became significant and the reduction of contaminant concentrations 

considerably relied on physico-chemical reactions, i.e., volatilization and hydrolysis. 

The results of numerical experiments demonstrated that reservoir flow regime 

substantially affects the persistence and behavior of the contaminant. That is, the dilution 

levels in the interflow and overflow regimes were similar, but the plume moved more slowly 

and experienced greater chemical loss in the overflow. The overflow regime resulted in a 

reduced toxic contamination level (less persistent), shorter plume length, and longer response 

time compare to the interflow. These differences may be considered in water quality 

management as water intake structures and fishery facilities or other recreational activities 

are mostly located downstream near the dam. Therefore, wherever or whenever possible and 

practical, an interflow should be avoid and an overflow should be used to lower 

contamination levels and to leave longer response time after a toxic spill. 

The Fate and Transport of Atrazine 

The time-variable half-life of atrazine was estimated with a mass balance concept in the 

Saylorville Reservoir, Iowa. The half-life varied monthly from 2 to 58 days depending upon 

the environmental conditions, such as temperature, sunlight, and microorganism. A 

significant inverse relationship was obtained between the half-life and the daily hours of 

sunlight, showing the significance of photodegradation at the study site. The results support 

the findings in previous studies (Pelizzetti et al. 1990; Goldberg et al. 1991; Kolpin and 

Kalkhoff 1993; Torrents et al. 1997) that photolysis is an effective process for degrading 
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atrazine level and diat sunlight is an important factor to degrade atraizne in surface water. 

The effect of nitrate concentration on the half-life of atrazine was insignificant possibly 

because the direct photolysis is a dominant atrazine degradation process rather than nitrate-

mediated indirect photolysis at the study site. The estimated armual mass budget showed that 

a great portion of atrazine transported into the reservoir waterbody from the farm land was 

mainly controlled by outflows and kinetic transformations. However, a case study showed 

that an 86% increase in atrazine uses in the upper Des Moines River basin would alter the 

pattern of reservoir water quality response because the loading rate is greater than the self-

purification capacity of the reservoir. 

The results of 2D toxic model revealed that the fate and transport of atrazine in the 

reservoir are strongly related to the seasonal circulation patterns, thermal structures, and 

environmental conditions of the reservoir. In general, no strong thermal stratification was 

noticed from both observed and simulated results. The effect of short circuiting of flow on 

the transport of atrazine was notable during summer as less mixing and corresponding higher 

concentrations occurred near the surface of the reservoir. The model accurately simulated the 

temporal variations of observed atrazine concentrations and captured the peak concentrations 

during the late spring. The use of the site-specific and time-variable kinetic transformation 

rates of atrazine led to more accurate predictions of atrazine concentrations. The assumption 

of steady atrazine transformation rate over the entire periods resulted in a 40% overestimation 

in predicting peak concentrations. Therefore, an accurate estimation of atrazine 

transformation rates in a specific aquatic environment or during a season should be 

performed before model application because the persistence of a toxic chemical is 

substantially affected by environmental conditions such as temperature, sunlight, and 

microbial concentrations during different seasons. 

Evaluation of EPIC Model 

The EPIC evaluation study supported the earlier findings by Rawls et al. (1980) and 

Rawls and Richardson (1983) that standard tabulated curve number values (Mockus 1969) 

should be reduced to represent the impacts of residue cover on the partition of precipitation 
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between surface runoff and infiltration. In this study, the curve number values for 

conservation tillage treatments were adequately calibrated to take into account the crop 

residue effects. The reduction of 10% or less should be adequate for the majority of 

conservation tillage systems as determined previously by Rawls et al. (1980). 

After the EPIC model was calibrated with the Treynor watershed data, the model 

captured the long-term trends of the hydrologic and environmental indicators during the 

validation period. The model was capable of replicating the long-term relative differences 

between the two tillage systems, which is the main emphasis in applying the model within 

many environmental impact analysis systems. However, results also revealed weaknesses in 

the model's ability to capture year-to-year variability due in part to simulating the watersheds 

in a homogeneous manner, which ignored complexities such as slope and soil variations. In 

the Nashua site, the drain flows and leached nitrogen predicted by EPIC on an annual and 

monthly basis were acceptable for all management systems, except for the estimated nitrogen 

loss under SCR managed with no-till. In general, the EF and r^ values for the drainage flows 

and leached nitrogen were satisfactory under all combinations of tillage and cropping 

systems. However, the predicted daily values contained abundant errors and missed peak 

drainage flows and nitrogen losses during several storm events. The paired t-test results 

among various tillage and crop rotation systems clearly showed that the EPIC model was 

able to replicate the effects of variation in agricultural management on the amount of 

subsurface drain flow and nitrogen loss at Nashua site. But, the model showed a limited 

capability to replicate the impact of different tillage and crop rotation systems on crop yield 

at both sites, i.e., the EPIC predicted crop yields were not sensitive to the different 

management systems, in contrast to what has been observed at the sites. 

Overall, EPIC proved sensitive to variations in tillage and cropping practices, 

producing satisfactory estimates of drainage flow, nitrate loss, and soil loss for the majority 

of simulated management systems. The resvilts confirmed that EPIC can be used to estimate 

nitrate losses in response to different management systems in integrated modeling 

fiameworks such as RAPS, especially for establishing long-term trends for nitrate leaching 

losses. However, clear discrepancies occurred between some model estimates and 
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corresponding measured values, such as peak losses for specific storm events and tile 

drainage flow and nitrate losses that occurred under no-tilled SCR. Two potential sources of 

these errors in EPIC include: (1) the lack of a preferential flow component, and (2) nitrogen 

transformation routines that may not adequately reflect all of the processes that occur in the 

field. 

Contribution 

This study enhanced the analytical capabilities of the reservoir water quality model 

(CE-QUAL-W2) and the understanding toward the fate and transport of toxic chemicals in a 

reservoir through model development and applications. The originality of this study is that it 

is the first research to investigate the effects of reservoir flow regime on the persistence and 

behavior of toxic contaminants in a stratified reservoir. The study also improved the 

understanding about the fate of atrazine and the environmental factors that affecting the 

persistence of the chemical in the surface water system. The EPIC validation studies 

presented the capabilities and limitations of the model as a tool for agricultural policy 

analysis and provided a practical guidance in the selection of the most suitable input 

parameters to depict different management systems. 

Future Researcii 

For future studies, more testing and validation efforts are required for the 2D reservoir 

toxic model to make the model more reliable. Field monitoring studies need to be conducted 

simultaneously to provide sufficient data and accurate model parameters such as kinetic 

transformation rate. Parameter and model uncertainties are areas of research and investigation 

requiring further work to better understand the limits of simulation. Ultimately, the model 

needs to be linked to a watershed model based on the concept of integrated modeling system 

(Srinivasan and Engel 1994; Srinivasan and Arnold 1994; Tim and Jolly 1994; Arnold et al. 

1998) to assess trends in reservoir water quality to changing watershed management system. 

Limited studies have been attempted to link the instream water quality models to watershed 

models for simulating both hydrology and water quality on a river basin scale (Summer et al. 
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1990; Ramanarayanan et al. 1998). Unfortunately, most of nonpoint source simulation 

models are rarely validated and need further improvement for the simulation of transport and 

transformations of pesticides and toxic substances. 

Since the intent of EPIC model in RAPS system is to apply the model over a wide 

range situations encountered in the study region, further testing and refinement of EPIC is 

required, both at Nashua (with 1993-96 measured data) and for other soil, landscape, and 

climate combinations, to improve EPIC's capability to replicate management system impacts 

(Gassman et al. 1998). The incorporation of preferential flow modeling component into the 

EPIC model may resolve the model weakness in predicting peak flows and chemical losses 

during heavy storm events. 
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APPENDIX. SOURCE PROGRAM OF THE 2D RESERVOIR TOXIC SUBMODEL 

RETOX_2D.FOR: A Laterally Integrated 2D Reservoir Toxic Submodel 
for the Fate and Transport of Toxic Substances 

by Se-Woong Chung 
Iowa State University 

$message: ' Compiling RET0X_2D. FOR' 
StJBROCrriNE RET0X_2D 

***** Include inc files 
INCLODE •w2.inc' 

***** Variables declarat:ion 
REAL KOW, KMi, KE, KH, KP, KG, KV, KD, KD2 
REAL GKTOP, LFKR, LHLR, MOLWT, NtJX, LKOW 
REAL KHN, KHA, KHB, KDP6, LO, IG 
REAL KBW1,KBW2,KBS1,KBS2 
REAL JDAY 
imXGER NHL 
CHARACTER* 20 KAME 
DOUBLE PRECISION DIFFW, DIFFA 
DIMENSION DIFSS(BO«:,II«:) , BIOSS (KMC, IMC) , HYDSS (BCMC, IMC) , 
1 PHOss (KMC, ii«:) , oxiss (ROO:, IMC) , VOLSS (KMC , IMC) , 
2 SETSS(KMC,IMC) 
DIMENSION BIOSSB (KMC, IMC) , DIFSSB (KKC, IMC) , SETSSB (KI«:, IMC) 
DIMENSION FRCDW(KMC, IMC) , FRCPW(K>K: , IMC) , FRCDB (KL®:, IMC) , 
1 FRCPB(KM:,IMC) 
DIMENSION CCTB(KMC,IMC) 
DIMENSION PCW(KMC,IMC) , PCB(KMC,IM3) 

***** Common block declauration 
CC»4M0N /GLOBLC/ JB, JC, LU, ID,KT,ELKR,DLT,KB (IMP) ,KTI (IMP) 
CC»1M0N /H_LIFE/ NHL, HLDATE(12), HLIFE(12) 
CC»4M0N /SCRNCL/ JDAY, DLTS, ILOC, EOXAC, MINDLT, JDMIN, 
1 IMIN, KMIN, DLTAV, NIT, NV, YEAR, 
2 ELTMJD 
CCWMON /KIN_SS/ DIFSS, BIOSS, HYDSS, PHOSS, OXISS, VOLSS 
CC»4M0N /SED_SS/ SETSS, SETSSB 
COMtlOtf /TEMPC/ T1(KMP,IMP), T2(KMP,IMP) 
CC»1M0N /TVDMTC/ TAIR, TDEW, CLOUD, PHI, ET, CSHE, 
1 SRO, LAT, LONG 
CC»1M0N /SETLC2/ SSETL, DSETL, ASETL, FESETL 
CC»1M0N /SEDCCAD/ TWSEDC (KMP , IMP) , ABSEDC (KMP, IMP) , TBSEDM(KMP, IMP) , 

1 BSEDC (KMP , IMP) , POROS (KMP, IMP) 
COIMON /TOXICC/ CCTW(KMC,IMC) , CCPW(KMC, IT®:) , CCDW(KMC, II«:) , 
1 CCPB(KL«:,IMC) , CCDB(KMC,IMC) , CCTBSS (KT«:, IMC) 
C<»1M0N /FRCTON/ FRCDW, FRCPW, FRCDB, FRCPB 
COMMON /PHYTC2/ BETA, EXH20, EXINOR, EXORG 
CCWMON /GLBLCC/ PALT, ALGDET, 02LIM, WIND, WSCDP, WSC (NDP) 
COMMON /HTORCL/ U(KMP,IMP), W(KMP,IMP) , AZ(KMP,IMP), 
1 RHO(KMP,IMP) , NDLT(KMP,IMP) 
CC»IMON /GEOMHC/ EL (KMP), H(KMP), HKTL(IMP), 
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1 HKT2(IMP) 
COMMON /TOXCON/ CCTB 
CC»®40N /GEOMBC/ B(KMP,IMP), BKT(IMP), BH(KMP,IMP), 

1 BHKTl(IMP), BHKI2(IMP), BHRKTl (IMP) , DLX(IMP) 
COMMON /GECMSD/ SAREA(KMP,IMP) , SVOL (KMP, IMP) , DELXAH (KMP, IMP) 
C<»®«ON /GEN_OPON/ GKTOP, LFKR, LHLR 
CC»4M0N /KRjOPTON/ HYDRO, PHOTO, OXIDO, BIODO, VOLAO, DIFEO, EXTRA 
COMMON /HALFLIFE/ HLHYD, HLPHO, HLOXI, HLBIO, HLVOL 
CC»®40N /CHEMICAI./ NAME, MOLWT, SOLUB, VPRE, LKOW, FOC 
CC»4M0N /SORPTION/ PARTW, PARTE, NUX 
C0»®10N /HYDROLYS/ KHN, KHA, KHB, BAN, EAH, EAOH, TREFH 
COMMON /PHOTOLYS/ KDPG, 10, IG 
CC»4M0N /OXIDATIN/ PKOX, TREFO, BOX 
COMMON /BIOD_WAT/ KBWl, KBW2, PBACW, QlOW 
CC»1M0N /BIOD_BED/ KBSl, KBS2, PBACS, QIOS 
CCT4M0N /VOLATILI/ HENRY, CAIR 

*********** ItltiHt********************************************************** 
Define and calctilate constants 

C Universal gas constant (cal/deg-mol) 
R=1.9872 

C Molecular diffusivity for chemical (m'^2/sec) @ 25 degrees C 
C in the water: 

DIFFW=2.2E-09/{MOLWT**0.6666) 
C in the ad.r: 

DIFFA=1.9E-04/ (MOLWT**0.6666) 
C Octanol-water partition coefficient 

KOW = 10.00**LKOW 

Initialize Veuriables 

DO I=IU,ID 
DO K=BCT,KB(I) 

DIFSS(K,I) =0.0 
BIOSS(K,I) =0.0 
HYDSS(K,I) =0.0 
PHOSS(K,I) =0.0 
OXISS(K,I) =0.0 
VOLSS(K,I) =0.0 
SETSS(K,I) =0.0 
BIOSSB(K,I) =0.0 
DIFSSB(K,I) =0.0 
SETSSB(K,I) =0.0 

END DO 
END DO 

Determine soilds-water peortition coefficient of the chemical in the 
water column and bed sediments 

C in water column 
PART = 0.617*FOC*KOW 
DO I=IU,ID 
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DO K=KT,KB(I) 
IF (PARTW .EQ. 0.0) THEN 

PCW(K,I) = PART 
ELSE IF (PARTW .GT. 0.0) THEN 

PCW(K,I) = PARTW 
ELSE 

PCW(K,I) = 2.0*FOC*KOW/(1.0+TWSEDC{K,I) *FOC*K0W/1.0E6/NUX) 
END IF 

END DO 
END DO 

C in the bed sediment 
DO I=IU,ID 

DO K=KT,KB(I) 
IF(PARTE .EQ. 0.0) THEN 

PCB(K,I) = PART 
ELSE IF (PARTB .GT. 0.0) THEN 

PCB(K,I) = PARTB 
ELSE 

PCB(K,I) = 2.0*FOC*KOW/(1.0TBSEDC(K,I) *FOC*KOW/1.0E3/NUX) 
END IF 

END DO 
END DO 

Determine the fraction constant of dissolved and sorbed chemical 

DO I=IU,ID 
DO K=KT,KB(I) 

FRCDW(K,I)= 1.0/(1.0+PCW(K,I)*TWSEDC(K,I)/1.0E6) 
FRCPW(K,1)= 1.0 - FRCDW(K,I) 
FRCDB(K,I) = 1.0/(1.0+PCB(K,I)*BSEDC(K,I)/1.0E3) 
FRCPS(K,I) = 1.0 - FRCDB(K,I) 

END DO 
END DO 

C Compute air-water partition coefficient of the chemical 
KAW = HENRY/(8.206E-05*(TAIR+273.15)) 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  
Calculate the physical, chemical, auid biological reaction processes 

C Option 1:No kinetics 
IF(GKTOP .EQ. 0)THEN 

DO I=IU,ID 
DO K=KT,KB(I) 

CCTWSS(K,I) =0.0 
CCTBSS(K,I) =0.0 

END DO 
END DO 

GOTO 9999 
END IF 

C Options 2: Lumped first-order kinetics and half-life 
C Options 3: Time-varisUble first-order kinetics euid hetlf-life 

IF(GKTOP .GZ. DTHEN 
IF (GKTOP .EQ. 2) THEN 
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LFKR = 0.693/LHLR 
LFKR = LFKR/86400. 
DO I=IU,ID 

DO K=KT,KB(I) 
CCTWSS{K,I) = -LFKR*CCTW(K,I) 

END DO 
END DO 

ELSE IF (GKTOP .EQ. 3) THEN 
DO I = 1,NHL 

IF (I .LT. NHL) THEN 
IF (JDAX.GE. HLDATE (I) .AND. JDAY.LT. HLDATE (I+l) ) THEN 

LHLR = HLIFE(I) 
END IF 

ELSE IF (I .EQ. NHL) THEN 
LHLR = HLIFE(NHL) 

END IF 
END DO 

LFKR = 0.693/LHLR 
LFKR = LFKR/86400. 

DO I=IU,ID 
DO K=KT,KB(I) 

CCTWSS(K,I) = -LFKR*CCTW(K,I) 
END DO 

END DO 
END IF 

GOTO 9999 
END IF 

C OptdLon 4: Input: half-life for each kinetic reactions 
IF (GKTOP .EQ. -2) THEN 

C hydrolysis 
IF (HLHXD .NE. 0)THEN 

KH = 0.693/HLHTO/86400 
DO I=IU,ID 

DO K=KT,KB(I) 
HXDSS(K,I) = KH*FRCDW(K,I)*CCTW{K,I) 

END DO 
END DO 

END IF 
C photolysis 

IF (HLPHO .NE. 0) THEN 
ECP = 0.693/HLPHO/86400. 
DO I=IU,ID 

DO K=KT,KB(I) 
PHOSS(K,I) = KP*FRCDW(K,I) *CCTW(K,I) 

END DO 
END DO 

END IF 
C oxidation 

IF (HLOXI .NE. 0) THEN 
KO = 0.693/(HLOXI*86400.) 
DO I=IU,ID 

DO K=KT,KB(I) 
OXISS(K,I) = KO*FRCDW(K,I) *CCTW(K,I) 

END DO 
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END DO 
END IF 

C bi.odegzada.ti.on 
IF (HLBIO .NE. 0) THEN 

HLBIO = 0.693/(KLBIO*864QO.) 
DO I=IU,ID 

DO K=KT,KB(I) 
BIOSS (K, I) = HLBIO*FRCDW(K,I) *CCTW(K,I) 
BIOSSB (K, I) = HLBIO*FRCDB (K, I) *CCTB (K, X) 

END DO 
END DO 

END IF 
C volatilization 

IF (HLVOL .NE. 0) THEN 
KV = 0.693/(HLVOL*86400.) 
DEPTH =0.0 
DO I=IU,ID 

DEPTH= HKTl(I)/2.0 
VOLSS(KT,I) = KV/DEPTH* (FRCDW(KT,I) *CCTW(KT,I)-CAIR/KAW) 
DO K=KT+1,KB(I) 

DEPTH=DEPTH+H (K) /2.0 
VOLSS (K, I) = £CV/DEPTH* (FRCDW (K, I) *CCTW (K, I) -CAIR/KAW) 

END DO 
END DO 

END IF 
C Sim up the kinetic source and sink terms 

DO I=IU,ID 
DO K=KT,KB(I) 

CCTWSS (K, I) =- (BIOSS (K, I) +HroSS (K, I) +PHOSS (K, I) + 
1 OXISS(K,I) )-VOLSS{K,I) 

END DO 
END DO 

GOTO 9999 
END IF 

C Option 5: Estimate kinetic rates for each reaction 
IF(GKTOP .EQ. -DTHEN 

C (1) Biodegradation 
IF(BIODO .NE. OTHEN 

IF (BIODO .EQ. 1) THEN 
C pseudo-lst-order reaction 

DO I=IU,ID 
DO K=KT,KB(I) 

RKBW=KBW1*Q10W** ((Tl (K, I) -20 .) /lO) /86400 . 
BIOSS (K, I) =RKBW*FRCDW(K, I) *CCTW(K, I) 
RKBS=KBS1*Q10S** ( (Tl (K, I) -20 .) /lO) /86400 . 
BIOSSB (K, I) =RKBS*FRCDB (K, I) *CCTB (K, I) 

END DO 
END DO 

ELSE 
C 2nd-order-reaction 

DO I=IU,ID 
DO K=BCT,KB(I) 

RKBW=B®W2*Q10W** ( (Tl (K, I) -20 .) /lO) *PBACW/86400 . 
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BIOSS (K,I)=RKBW*FRCDW{K,I) *CCTW(K,I) 
RKBS=KBS2*Q10S** ( (T1 (K, I) -20.) /lO) *PBACS/86400 . 
BIOSSB (K, I) =RKBS*FRCDB (K, I) *CCTB (K, I) 

EKD DO 
END DO 

END IF 
END IF 

Hydrolysis 
IF(HYDRO .NE. 0)THEN 

IF (HYDRO .GT. 0) THEN 
KH=HYDRO/86400. 

- Ist-order ra^e constemt 
DO I=IU,ID 

DO K=KT,KB(I) 
HYDSS (K,I)=KH*FRCDW(K,I) *CCTW(K,I) 

END DO 
END DO 

ELSE IF (HYDRO .EQ. -1)THEN 
- 2°^-order rate: estimate using input parameters 

CALL HYDROL 
END IF 

END IF 

Photolysis 
IF(PHOTO .NE. 0)THEN 

IF (PHOTO .GT. 0) THEN 
PHPTO=PHOTO/86400. 

Ist-order rate constant 
DO I=IU,ID 

DO K=BCT,KB(I) 
PHOSS (K,I)=PHOTO*FRCDW(K,I) *CCTW(K,I) 

END DO 
END DO 

ELSE IF (PHOTO .EQ. -1) THEN 
KDPG = KDPG/86400. 
DEPTH =0.0 

Optionl: Thomman and Mueller equation 
DO I=IU,ID 

DEPTH= HKTl(I)/2.0 
KE = EXH20+EXIN0R* SS (KT , I) +EXORG* (ALGAE (BCT , I) 

+DETRIT(KT,I) ) 
KP = KDPG*IO/IG*1.33* (1-EXP(-KE*DEPTH) ) / 

(KE*DEPTH) 
PHOSS (KT,I)=KP*FRCDW(KT,I) *CCTW(KT,I) 
DO K=KT+1,KB(I) 

DEPTH = DEPTH+H(K)/2 . 0 
KE =EXH20+EXIN0R*SS (K, I) +EXORG* (ALGAE (K, I) 

+DETRIT (K,I) ) 
KP =KDPG*IO/IG*1.33* (1-EXP (-KE*DEPTH) ) / 

(KE*DEPTH) 
PHOSS (K, I) =KP*FRCDW(K, I) *CCTW(K, I) 

END DO 
END DO 

ELSE 
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C Beer-Lambert formxxlar: not used currently 
DO I=IU,ID 

DO K=ECr,KB(I) 
PHOSS (K,I)=0.0 

END DO 
END DO 

END IF 
EKD IF 

C (4) Oxidation: Pseudo-first-order reaction 
IF(OXIDO .NE. 0) THEN 

PKOX = PKOX/86400. 
DO I=IU,ID 

DO K=ICr,KB(I) 

TEMP = T1(K,I)+273.15 
TREF = TREFO+273.15 
XX = 1000 . * (TEMP-TREF) / (R*TEMP*TREF) 
KO = PKOX*EXP (EOX*XX) 
OXISS(K,I) = KO*FRCDW(K,I) *CCTW(K,I) 

END DO 
END DO 

END IF 

C (5) Volatilization 
IF (VOIiAO . NE . 0) THEN 

C define constants and compute density (g/ml) ctnd viscosity (m'^ 2/s) 
XLAM2 = 4. 
CDRAG = 0.0011 
DENA = 0.001293/(l.+0.00367*TAIR) 
XNUA = (1.32+0.009*TAIR) *l.B-05 
SCA = XNUA/DIFFA 

IF(VOLAO .GT. 0)THEN 
KV = VOLAO/86400. 

C lumped first-order-rate constant: mostly for well-mixed waterbody 
DO I=IU,ID 

DEPTH= HKTl(I)/2.0 
VOLSS (KT, I) =KV/DEPTH* (FRCDW (KT, X) *CCTW (KT, I) -CAIR/KAW) 
DO K=KT+1,KB(I) 

DEPTH=DEPTH+H(K) /2.0 
VOLSS (K, I) = KV/DEPTH*(FRCDW(K, I) *CCTW(K, I)-CAIR/KAW) 

END DO 
END DO 

ELSE IF(VOLAO .EQ. -1) THEN 
C use O'Conner's formula to estimate KV 

USTAR = SQRT (CDRAG) *WIND 
DO I=IU,ID 

DEPTH= HKTl(I)/2.0 
DENW = RHO(KT,I)/lOOO. 
XNUW = (1.14-0.031*(T1(KT,I)-15)+0.00068* 

1 (Tl(KT,I)-15)**2)*l.E-06 
sew = XNUW/DIFFW 
XKL = USTAR* SQRT (DENA/DENW)*(0.905/XLAM2)* 

1 (1/SCW)**0.666+1.OE-09 
XKG = USTAR*(0.905/XLAM2)*(l/SCA)**0.666+1.E-09 
KV = 1.0/(1./XKL+1./(KAW*XKG) ) 
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VOLSS(KT,I) = KV/DEPTH* (FRCDW(KT, I) *CCTW(BCr, I) 
L -CAIR/BOW) 

DO K=KT+1,B®(I) 
DEPTH = DBPTH+H(K)/2.0 
DENW = RHO(K,I)/1000. 
XNUW = (1.14-0.031*(T1{K,I)-15)+0.00068* 

L (Tl(K,I)-15)**2)*l.E-06 
sew = XNUW/DIFFW 
XKL = USTAR* SQRT (DENA/DENW) * ( 0 . 905/XLAM2) * 

L (1/SCW)**0.666+1.OE-09 
XKG = USTAR* (0.905/XLAM2)* (1/SCA) **0. 666+1.E-09 
KV = 1.0/(1./XKL+1./(KAW*XKG) ) 
VOLSS (K, I) = KV/DEPTH* (FRCDW(K, I) *CCTW(K, I) 

L -CAIR/KAW) 
END DO 

END DO 
ELSE IFCVOLAO .EQ. -2) THEN 
use Kackay equaliion to estmate KV 

aSTAR=0. 01*WIND*SQRT (6.1+0 . 63*WIND) 
XKG = USTAR*0.0462*(l/SCA)**0.666+1.E-03 
DO I=IU,ID 

DEPTH= HKTl(I)/2.0 
DENW = RHO(KT,I)/lOOO. 
XNUW = (1.14-0.031*(T1(KT,I)-15)+0.00068* 

L (T1(KT,I)-15)**2)*l.E-06 
sew = XNUW/DIFFW 
IF(USTAR .GT. 0.3) XKL=USTAR*0.00341*(1/SCW) **0.5 

+1.E-06 
IF (USTAR .LE. 0.3) XKL=USTAR**2 . 2*0 . 0144* (1/SCW) ** 

0.5+1.E-06 
KV = 1.0/(1./XKL+1./(KAW*XKG) ) 

VOLSS(KT,I) = KV/DEPTH* (FRCDW(KT, I) *CCTW(KT, I) 
-CAIR/KAW) 

DO K=ier+l,iCB(I) 
DEPTH=DEPTH+H(K)/2.0 
DENW = RHO(K,I)/1000. 
XNUW = (1.14-0.031*(T1(K,I)-15)+0.00068* 

(T1(K,I)-15)**2)*l.E-06 
sew = XNUW/DIFFW 
IF(USTAR .GT. 0.3) XKL=USTAR*0 . 00341* (1/SCW) **0 . 5 

+1.E-06 
IF(USTAR -LE. 0.3) XKL=USTAR**2 . 2*0 . 0144* (1/SCW) ** 

0.5+1.E-06 
KV = 1.0/(1./XKL+1./(KAW*XKG) ) 
VOLSS(K,I) = KV/DEPTH*FRCDW(K,I) *CCTW(K,I) 

END DO 
END DO 

END IF 
END IF 

(6) Diffusive exchange 
IF(DIFEO .NE. 0)THEN 

DO I=IU,ID 
DO K=KT,KB(I) 

KD = 19. 0*POROS(K, I)* (1/MOLWT) **0. 666*1. OE-02 
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KD = BCD/86400. 
KD2= KD*SAREA(K,I) 
DIFSS (K, I) =KD2* (FRCDB (K, I) *CCTB (K, I) /POROS (K, I) -

1 FRCDW(K,I) *CCTW(K,I) )/(BH(K,r) *DLX(I) ) 
DIFSSB (K, I) =KD2* (FRCDB (K, I) *CCTB (K, I) /POROS (K, I) -

1 FRCDW(K, I) *CCTW{K, I) ) / (SVOL (K, I) *POROS (K, I)) 
END DO 

END DO 
END IF 

C Sum up the kinetic source and sink terms 
DO I=IU,ID 

DO R=ia:,KB(I) 
CCTWSS (K, I) =DIFSS (K, I) - (BIOSS (K, I) +HYDSS (K, I) +PHOSS (K, I) + 

1 OXISS(K,I))-VOLSS(K,I) 
CCTBSS (K, I) =-BIOSSB (K, I) -DIFSSB (K, I) 

END DO 
END DO 

END IF 

9999 CONTINUE 

Call siibroutine SETTI. to compute the souce/sink due to settling 
•Itiliticltlfk************-******************************************************* 

CAliL SETTL 

Compute final source and sink terms for water column euid bed sedi ment 

DO I=IU,ID 
DO K=KT,KB{I) 

CCTWSS (K, I) =CCTWSS (K, I) +SETSS (K, I) 
CCTBSS(K,I)=CCTBSS(K,I)+SETSSB(K,I) 

END DO 
END DO 

END 

HYDROL.FOR: SUBROUTINE for HYDROLYSIS IN WATER COLUMN 

$message:'Compiling HYDROL.FOR' 
SUBROUTINE HYDROL 
INCLUDE •w2.inc' 
REAL KHN, KHA, KHB, NEUH 
COMMON /GLOBLC/ JB, JC, lU, ID,KT,ELKT,DLT,KB (IMP) ,KTI (IMP) 
COMMON /TEMPC/ T1(KMP,IMP), T2(KMP,IMP) 
COMMON /HYDROLYS/ KHN, KHA, KHB, EAN, EAH, EAOH, TREFH 
CC»IMON /FRCTON/ FRCDW(KMC, IMC) , FRCPW(KMC, IMC) , 

1 FRCDB (KMC,IMC) , FRCPB (KMC, IMC) 
CC»1M0N /KIN_SS/ DIFSS (Kh«:, IMC) , BIOSS (KMC, IMC) , HYDSS (KMC, IMC) , 

1 PHOSS(KMC,IMC) , OXISS{KMC,IMC) , VOLSS (KMC, IMC) , 
COMMON /TOXCON/ CCTB (KMC, IMC) 
CC»1M0N /TOXICC/ CCTW(KMC,IbK:) , CCPW(KMC, IMC) , CCDW(Kb«:, IMC) , 

1 CCPB(KMC,IMC) , CCDB(KMC,IMC) , CCTBSS (KMC , IMC) 
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R=1.9872 
DO I=IU,ID 

DO K=iCr,KB(I) 
TEMP = T1(K,I)+273.15 
TREF = TREFH+273.15 
HION = 10**(-PH(K,I)) 
OH = 10**(-14+PH{K,I)) 
XX = 1000. * (TEMP-TREF) / (R*TEMP*TREF) 
ALKH = KHB*EXP(EAOH*XX) 
NEUH = KHN*EXP (EAN*XX) 
ACIH = KHA*EXP (EAH*XX) 
KH = ALKH*OH + NEUH + ACIH*HION 
HTOSS{K,I) = KH*FRCDW{K,I) *CCIW(K,I) 

END DO 
END DO 
END 

SETTIi. FOR: SUBROUTINE for se'k'tXin9 of particulates 

$message; ' Compiling SETTIi. FOR' 
SUBROUTINE SETTL 
INCLUDE •w2.inc' 
CHARACTER*3 ACC 
DIMENSION SSCW(KMC, IMC) , SSCB(KMC,IMC) 
DIMENSION ALGCW(KMC,I1«:) , ALGCB (ia«:, IMC) 
DIMENSION DETCW(ia«:,Il«:) , DEXCB(KMC,IMC) 
DOUBLE PRECISION FRW, FRB 
COMMON /GLOBLC/ JB, JC, lU, ID,KT,ELKT,DLT,KB (IMP) ,KTI (IMP) 
COMMON /SETLC2/ SSETL, DSETL, ASETL, FESETL 
CC»4M0N /GEOMHC/ EL (KMP) , H(KMP), HKTl(IMP), HKT2(IMP) 
COMMON /WBFRCT/ FRW (KMP, IMP) , FRB (KMP, IMP) 
COMMON /TOXICC/ CCTW(KMC, IMC) , CCPW(KMC, IMC) , CCDW(KMC, IMC) , 

1 CCPB (KMC, IMC) , CCDB (KMC, IMC) , CCTBSS (KMC, IMC) 
CC»®40N /FRCTON/ FRCDW(KkK:, IMC) , FRCPW(Kl«:, IMC) , 

1 FRCDB(KMC,IMC) , FRCPB (KMC, IMC) 
CC»1M0N /SED_SS/ SETSS (KMC, IMC) , SETSSB (KMC, IMC) 
CC»1M0N /TOXCON/ CCTB (KMC, IMC) 
C(»<MON /ACONST/ ACC (NCP) 

C Initialize variables 
DO I=IU,ID 

DO K=KT,KB(I) 
SSCW(K,I) 
SSCB(K,I) 
ALGCW(K,I) 
ALGCB(K,I) 
DETCW(K,I) 
DETCB(K,I) 

END DO 
END DO 

C Settling of inorgeuiic suspended solid-sorbed toxicant 
IF(ACC(2) .EQ. • ON') THEN 

= 0.0 
= 0.0 
= 0.0 
= 0.0 

=  0 . 0  
= 0.0 
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DO I=IU,ID 
SSCW(KT,I) = -SSETI.*FRCPW(KT,I) *CCTW{KT,I)/HKT2 (I) 
SSCB(KT,I) = -SSCW(KT,I) *FRB(KT,I) 
DO K=BCT+1,KB(I) 

SSCW(K,I) = SSETL* {FRCPW(K-1,I) *CCTW(K-1,I)-
1 FRCPW(K,I) *CCTW{K,I))/H(K) 

SSCB(K,I) = SSETIi*FRCPW(K,I) *CCTW(K,I)/H(K) *FRB(K,I) 
END DO 

END DO 
END IF 

C Set:tJ.ing of algae-sorbed toxicant: 
IF(ACC(7) .EQ. • ON')THEN 

DO I=IU,ID 
ALGCW(KT,I) = -ASETI.*FRCPW(KT,I) *CCTW(KT,I)/HKT2 (I) 
ALGCB(KT,I) = -ALGCW(KT,I) *FRB{KT,I) 
DO K=KT+1,BCB(I) 

ALGCWCK,!) = ASETL*(FRCPW(K-1,I)*CCTW{K-1,I)-
1 FRCPW(K,I)*CCTW(K,I))/H(K) 

ALGCB(K,I) = ASETI.*FRCPW(K,I) *CCTW(K,I)/H(K) *FRB(K,I) 
END DO 

END DO 
END IF 

C Settling of organic pajrticles-sorbed. toxicant 
IF(ACC{8) .EQ. • ON')THEN 

DO I=IU,ID 
DETCW(KT,I) = -DSETI,*FRCPW(KT,I) *CCTW(KT,I)/HKT2 (I) 
DETCB(KT,I) = -DETCW(KT,I)*FRB(KT,I) 
DO K=KT+1,KB(I) 

DETCW(K,I) = DSETL* (FRCPW(K-1,I) *CCTW(K-1,I)-
1 FRCPW(K,I) *CCTW(K,I) )/H(K) 

DETCB(K,I) = DSETL*FRCPW(K,I) *CCTW(K,I)/H{K) *FRB(K,I) 
END DO 

END DO 
END IF 

C Compute total, source and sink terms due to settling 
DO I=IU,ID 

DO K=KT,KB{I) 
SETSS (K, I) =SSCW(K, I) +ALGCW(K, I) +DETCW{K, I) 
SETSSB (K, I) =SSCB (K, I) +ALGCB (K, I) +DETCB (K, I) 

END DO 
END DO 
END 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

TOXIl.FOR: SUBROUTINE for BETOX 2D.FOR 

C Read in input data from toxic.npt 
$message:'Compiling TOXXl.FOR' 

SUBROUTINE TOXIl 
INTECTIR TON, OUT 
INTEGER NHL 
REAL GKTOP, LFKR. LHLR. MOLWT, NUX. LKCW 
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REAL KHN, KHA, KHB, KDPG, 10, IG 
REAL KBWl,KBW2,KBSl,KBS2 
CHARACTER*72 TITLE 
CHARACTER*72 OUTFN,TONFN, SEDFN, TOXFN 
CHARACTER*20 NAME 
PARAMETER (TONFN=' toxic, npf ) 

C Statement 
DIMENSION TITLE (6) 
DIMENSION HLDATE(12), HLIFE(12) 
CC»MON /H_LIFE/ NHL, HLDATE, HLIFE 
CC»4M0N /CTttJ_OPON/ GKTOP, LFKR, LHLR 
CC»4M0N /KR_OPTON/ HYDRO, PHOTO, OXIDO, BIODO, VOLAO, DIFEO, EXTRA 
CC»4M0N /HALFLIFE/ HLHYD, HLPHO, HLOXI, HLBIO, HLVOL 
COMMON /CHEMICAL/ NAME, MOLWT, SOLUB, VPRE, LKOW, FOC 
CCaiMON /SORPTION/ PARTW, PARTE, NOX 
COMMON /HYDROLYS/ KHN, KHA, KHB, BAN, EAH, EAOH, TREFH 
CC»dMON /PHOTOLYS/ KDPG, 10, IG 
CCWMON /OXIDATIN/ PKOX, TREFO, EOX 
COMMON /BIODJMAT/ KBWl, KBW2, PBACW, QlOW 
COMMON /BIOD_BED/ KBSl, KBS2, PBACS, QIOS 
CC»1M0N /VOLATILI/ HENRY, CAIR 
CC»IMON /BSEDOP/ OP4SI,OP4CI 
COMMON /BSEDFN/ SEDFN, TOXFN 
DATA TON /30/, OUT /33/ 

C Open toxic input file 
OPEN (TON, FILE=TONFN, STATUS=' OLD') 

C Read title cards 
READ(TON,*) 
READ(TON,1000) (TITLE(J) , J=1,6) 

1000 FORMAT(//(8X,A72)) 
C Read genered. Icinetic options 

READ(TON,1010) GKTOP, LFKR, LHLR 
1010 FORMAT(//8X,3F8.2) 
C Read niimbers o£ half-life, HLDATE and HLIFE 

READ(TON,1011) NHL 
1011 FORMAT(//8X,18) 

READ (TON, 1012) (HLDATE (I) , 1=1 ,NHL) 
READ (TON, 1012) (HLIFE (I) , 1=1,NHL) 

1012 FORMAT(//(8X,8F8.0)) 
READ(TON,1020) HYDRO, PHOTO, OXIDO, BIODO, VOLAO, DIFEO, EXTRA 

1020 FORMAT (//8X,7F8.2) 
READ(TON,1030) HLHYD, HLPHO, HLOXI, HLBIO, HLVOL 

1030 FORMAT (//8X,5F8.2) 
READ(TON,1040) NAME, MOLWT, SOLOB, VPRE, LKOW, FOC 

1040 FORMAT(//8X, A16,5F8.2) 
READ(TON,1050) OP4SI,OP4CI 

1050 FORMAT{//8X,2F8.2) 
READ (TON, 1080) PARTW, PARTE, NOX 

1080 FORMAT(//8X,2F8.2, F8.0) 
READ (TON, 1090) KHN, KHA, KHB, BAN, EAH, EAOH, TREFH 

1090 FORMAT(//8X,7F8.2) 
READ(TON,llOO) KDPG, 10, IG 

1100 FORMAT(//8X,F8.2,2F8.0) 
READ(TON,1110) PKOX, TREFO, EOX 

1110 FORMAT(//8X,3F8.2) 
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READ(TON,1130) KBWl, KBW2, PBACW, QlOW 
1130 FORMAT{//8X,2F8.2, F8.0, F8.2) 

READ(TON, 1130) KBSl, KBS2, PBACS, QIOS 
READ(TON,1150) HENRY, CAIR 

1150 FORMAT(//8X,2F8.0) 
READ(TON, 1000) SEDFN 
READ(TON,1000) TOXFN 
READ(TON,1000) BRSFN 
READ(TON,1000) OUTFN 

***** Convert unit of kinetic rate from /day to /sec 
KHA = KHA/86400. 
KHB = KHB/86400. 
KHN = KHN/86400. 
OPEN (OUT, FIIiE=OUTFN, STATUS=' UNKNOWN' ) 

***** Write the input data to output file (toxi. opt) 
WRITE(OUT,3000) (TITLE(J), J=l,6) 

3000 FORMAT (//(IX,A72)) 
WRITE(OUT,3010) GKTOP, LFKR, LHLR 

3010 FORMAT (/IX,'Global kinetics options =',F8.2, 
1 /IX,'Lumped first-order rate =',F8.2, 
2 /IX,'Lumped hcu:f-life rate =',F8.2) 
WRITE(OUT,3011) NHL 

3011 FORMAT (/IX,'Number of half-life =', 18) 
WRITE (OUT , 3012) (HLDATE (I) , 1=1 ,NHI.) 
WRITE(OUT,3012) (HLIFE(I),1=1,NHL) 

3012 FORMAT (/(8X,8F8.2)) 
WRITE(OUT,3015) 

3015 FORMAT (/IX,'Kinetic rate and option'/, 
1 3X,' HYDRO PHOTO OXIDO BIODO VOIAO DIFEO EXTRA') 
WRITE(OUT,3020) HYDRO, PHOTO, OXIDO, BIODO, VOLAO, DIFEO, EXTRA 

3020 FORMAT(3X,7F8.2) 
WRITE(OUT,3030) HLHYD, HLPHO, HLOXI, HLBIO, HLVOL 

3030 FORMAT(/IX,'Half-life rate for each kinetic reaction', 
1 /3X, ' HLHYD HLPHO HLOXI HLBIO HLVOL',/3X,5F8.2) 

WRITE(OUT,3040) 
3040 FORMAT(/IX,'Chemical Characteristics') 

WRITE(OUT,3045) NAME 
3045 FORMAT (3X, 'Name of chemical: ' ,A20) 

WRITE (OXJT, 3046) MOLWT, SOLUB, VPRE, LKOW, FOC 
3046 FORMAT(3X,'Molecular weight[g] =',F8.2,2X,'Solubility[mg/L] =', 

1 F8.2,/3X,'Vapor Pressure[atm] =',E8.2,2X,'Log KOW 
2 =',F8.2,/3X,'Fraction of organic carbon [FOC] =',F8.4) 
WRITE(OUT,3050) OP4SI,OP4CI 

3050 FORMAT(/IX,'Initial bed sediment emd chemical conditions', 
1 /3X,'Bed sediment initial condition[kg/L] =',F8.2, 
2 /3X,'Bed chemical initial condition[mg/L] =',F8.2) 
WRITE(OUT,3080) PARTW, PARTS, NUX 

3080 FORMAT (/IX, ' Paurtitioning option and data', 
1 /3X,'Partitioning in water column :'F8.2, 
2 /3X, 'Partitioning in bed sediment :'F8.2, 
3 /3X,'Sediment effect control factor:'E8.2) 

WRITE (OUT, 3090) KHN, KHA, KHB, EAN, EAH, EAOH, TREFH 
3090 FORMAT(/IX,'Input Parameters for Hydorolysis',/, 

1 8X, 'KHN' ,5X, 'KHA' ,5X, 'KHB* ,5X, 'EAN' ,5X, 'EAH' ,4X, 'EAOH' , 
2 3X,'TREFH',/,3X,7F8.2) 
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WRI-EE (OUT,3100) KDPG, lO, IG 
3100 FORMAT(/IX,'Input Parameters for Photolysis',/, 

1 7X, 'KDPG',6X, '10',6X, 'IG',/,3X,E8.2,2F8.2) 
WRITE(OUT,3110) PKOX, TREFO, BOX 

3110 FORMAT (/IX, ' Input Parameters for Oxidation',/, 
1 7X,-PKOX',3X,'TREFO',5X,'EOX',/,3X,3F8.2) 

WRITE(OUT,3130) KBWl, KBW2, PBACW, QlOW, KBSl, KBS2, PBACS, QIOS 
3130 FORMAT(/IX,'Input Parameters for Biodegradation',/, 

1 7X, 'KBWl' ,4X, •KBW2' ,3X, 'PBACW' ,4X, 'QlOW' , / , 3X, 4F8 . 2 , / , 
2 7X, 'KBSl' ,4X, 'KBS2' ,3X, 'PBACB' ,4X, 'QlOB' ,/,3X,4F8.2) 
WRITE(OUT,3150) HENRY, CAIR 

3150 FORMAT (/IX, "Henry law constant [atni/mole/ni'^3] :',E8.2,/, 
1 IX,'Chemical concentration in air [ppb]:',F8.2) 

***** CLOSE FILES 
CLOSE (TON) 
CLOSE (OUT) 
END 
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